數學知識點如何快速記憶
很多人都覺得數學是不用記的,其實,數學要記憶的知識點還是比較多的,要記憶公式定理等知識點,把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶,這就是有效記憶數學知識的方法。下面由小編給你帶來關於,希望對你有幫助!
1.歸類記憶法
就是根據識記材料的性質、特徵及其內在聯絡,進行歸納分類,以便幫助學生記憶大量的知識。比如,學完計量單位後,可以把學過的所有內容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜複雜的事物系統化、條理化,易於記憶。
2.歌訣記憶法
就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準頂點,零線對著一邊,另一邊看度數。”再如,小數點位置移動引起數的大小變化,“小數點請你跟我走,走路先要找準‘左’和‘右’;橫撇帶口是個you,擴大向you走走走; 橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數位不夠找‘0’拉拉鉤。”採用這種方法來記憶,學生不僅喜歡記,而且記得牢。
3.規律記憶法
即根據事物的內在聯絡,找出規律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法。化法和聚法是互逆聯絡,即高階單位的數值×進率=低階單位的數值,低階單位的數值÷進率=高階單位的數值。掌握了這兩條規律,化聚問題就迎刃而解了。規律記憶,需要學生開動腦筋對所學的有關材料進行加工和組織,因而記憶牢固。
4.列表記憶法
就是把某些容易混淆的識記材料列成表格,達到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質數、質因數、互質數這三個概念的區別,就可列成表來幫助學生記憶。
5.重點記憶法
隨著年齡的增長,所學的數學知識也越來越多,學生要想全面記住,既浪費時間且記憶效果不佳。因此,要讓學生學會記憶重點內容,學生在記住了重點內容的基礎上,再通過推導、聯想等方法便可記住其他內容了。比如,學習常見的數量關係:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關係中只要記住了第一個數量關係,後面兩個數量關係就可根據乘法和除法的關係推匯出來。這樣去記,減輕了學生記憶的負擔,提高了記憶的效率。
6.聯想記憶法
就是通過一件熟悉的事物想到與它有聯絡的另一件事物來進行記憶。
數學公式點快速記憶
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算子號法則
同號得正異號負,一項為零積是零。
合併同類項
說起合併同類項,法則千萬不能忘。
只求係數代數和,字母指數留原樣。
去、添括號法則
去括號或添括號,關鍵要看連線號。
擴號前面是正號,去添括號不變號。
括號前面是負號,去添括號都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括號,移項變號要記牢。
同類各項去合併,係數化“1”還沒好。
求得未知須檢驗,回代值等才上算。
解一元一次方程
先去分母再括號,移項合併同類項。
係數化1還沒好,準確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。