高一數學必修二知識點

  數學是所有學科基礎,那麼高一數學必修二都有哪些知識點呢?下面是小編為你整理的,一起來看看吧。

  :直線和平面的位置關係

  直線和平面的位置關係:

  直線和平面只有三種位置關係:在平面內、與平面相交、與平面平行

  ①直線在平面內——有無數個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

  esp.空間向量法***找平面的法向量***

  規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

  由此得直線和平面所成角的取值範圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直

  esp.直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。

  ③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。

  :空間兩直線的位置關係

  空間兩直線的位置關係:

  空間兩條直線只有三種位置關係:平行、相交、異面

  1、按是否共面可分為兩類:

  ***1***共面:平行、相交

  ***2***異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:範圍為***0°,90°***esp.空間向量法

  兩異面直線間距離:公垂線段***有且只有一條***esp.空間向量法

  2、若從有無公共點的角度看可分為兩類:

  ***1***有且僅有一個公共點——相交直線;***2***沒有公共點——平行或異面

  :冪函式

  定義:

  形如y=x^a***a為常數***的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。

  定義域和值域:

  當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域

  性質:

  對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^***p/q***=q次根號***x的p次方***,如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞***。當指數n是負整數時,設a=-k,則x=1/***x^k***,顯然x≠0,函式的定義域是***-∞,0***∪***0,+∞***.因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

  排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

  排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:

  如果a為任意實數,則函式的定義域為大於0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。

  在x大於0時,函式的值域總是大於0的實數。

  在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。

  而只有a為正數,0才進入函式的值域。

  由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況.

  可以看到:

  ***1***所有的圖形都通過***1,1***這點。

  ***2***當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。

  ***3***當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。

  ***4***當a小於0時,a越小,圖形傾斜程度越大。

  ***5***a大於0,函式過***0,0***;a小於0,函式不過***0,0***點。

  ***6***顯然冪函式無界。