初中數學知識手抄報
數學在人的生活中處處可見,息息相關。若能良好的使用數學,則能使我們的生活變得更加快捷。做數學手抄報也是一種學習數學的方法。下面是小編為大家帶來的,希望大家喜歡。
1:旋轉知識點
1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。***圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前後圖形的大小和形狀沒有改變。***
2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度後,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角***旋轉角小於0°,大於360°***。
3.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉180度後能與自身重合,那麼我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉180度後能與另一個圖形重合,那麼我們就說,這兩個圖形成中心對稱。
4.中心對稱的性質:
關於中心對稱的兩個圖形是全等形。
關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。
關於中心對稱的兩個圖形,對應線段平行***或者在同一直線上***且相等。
圖一
圖二
圖三
2:圓的知識點概括
1.圓:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓弧和絃:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連線圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。
6.圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
7.圓和點的位置關係:以點P與圓O的為例***設P是一點,則PO是點到圓心的距離***,P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
8.直線與圓有3種位置關係:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
9.兩圓之間有5種位置關係:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r
10.切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
11.切線的性質:***1***經過切點垂直於這條半徑的直線是圓的切線。***2***經過切點垂直於切線的直線必經過圓心。***3***圓的切線垂直於經過切點的半徑。
12.垂徑定理:平分弦***不是直徑***的直徑垂直於弦,並且平分弦所對的兩條弧。
13.有關定理:
平分弦***不是直徑***的直徑垂直於弦,並且平分弦所對的兩條弧.
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
在同圓或等圓中,同弧等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半.
半圓***或直徑***所對的圓周角是直角,90°的圓周角所對的弦是直徑.
14.圓的計算公式 1.圓的周長C=2πr=πd 2.圓的面積S=πr^2; 3.扇形弧長l=nπr/180
15.扇形面積S=π***R^2-r^2***