水質自動監測技術與線上自動監測儀器的發展現狀

1、前言

  實施水質自動監測,可以實現水質的實時連續監測和遠端監控,達到及掌握主要流域重點斷面水體的水質狀況、預警預報重大或流域性水質汙染事故、解決跨行政區域的水汙染事故糾紛、監督總量控制制度落實情況、排放達標情況等目的。

  2、水質自動監測技術

  2.1水質自動監測系統的構成

  在水質自動監測系統網路中,中心站通過衛星和電話撥叼兩種通訊方式實現對各子站的實時監視、遠端控制及資料傳輸功能, 託管站也可以通過電話撥號方式實現對所託管子站的實時監視、遠端控制及資料傳輸功能,其他經授權的相關部門可通過電話撥號方式產現對相關子站的實時監視和資料傳輸或能。

  每個子站是一個獨立完整的水質自動監測系統,一般由6個主要子系統構成,包括:取樣系統、預處理系統、監測儀器系統、PLC控制系統、資料採集、處理與傳輸子系統及遠端資料管理中心、監測站房或監測小屋。目前,水質自動監測系統中的子系統及遠端資料管理中心、監測站房或監測小屋。目前,水質自動監測系統中的子站的構成方式大致有三種:

  (1)由一臺或多臺小型的多引數水質自動分析儀(如:YS1公司和HYDROLAB公司的常規五引數分析儀)組成的子站(多臺組合可用於測量不同水深的水質)。其特點是儀器可直接放於水中測量,系統構成靈活方便。

  (2)固定式子站:為較傳統的系統組成方式。其特點是監測專案的選擇範圍寬。

  (3)流動式子站:一種為固定式子站儀器裝置全部裝於一輛拖車(監測小屋)上,可根據需要遷移場所,也可認為是半固定式子站。其特點是組成成本較高。

  各單元通過水樣輸送管路系統、訊號傳輸系統、壓縮空氣輸送管路系統、純水輸送管路系統實現相互聯絡。

  一個可*性很高的水質自動監測系統, 必須同時具備4個要素,即(1)高質量的系統裝置;(2)完備的系統設計;(3)嚴格的施工管理;(4)負責的執行管理。

  2.2水質自動監測的技術關鍵

  2.2.1採水單元

  包括水泵、管路、供電及安裝結構部分。在設計上必須對各種氣候、地形、水位變化及水中泥沙等提出相應解決措施,能夠自動連續地與整個系統同步工作,向系統提供可*、有效水樣。

  2.2.2配水單元

  包括水樣預處理裝置、自動清洗裝置及輔助部分。配水單元直接向自動監測儀器供水,具有線上除泥沙和線上過濾,手動和自動管道反衝洗和除藻裝置;其水質、水壓和水量應滿足自動監測儀器的需要。

  2.2.3分析單元

  由一系列水質自動分析和測量儀器組成, 包括:水溫、PH、溶解氧(DO)、電導率、濁度、氨氮、化學需氧量、高錳酸鹽指數、總有機碳(TOC)、總氮、總磷、硝酸鹽、磷酸鹽、***、氟化物、氯化物、酚類、油類、金屬離子、水位計、流量/流量/流向計及自動取樣器等組成。各主要線上自動分析儀器的發展現狀將地第3節詳述。

2.2.4控制單元

  包括:(1)系統控制櫃和系統控制軟體;(2)資料採集、處理與儲存及其應用軟體;(3)有線通訊和衛星通訊裝置。

  2.2.5子站站房及配套設施

  包括:(1)站房主體;(2)配套設施

  3、線上自動分析儀器的發展

  3.1概述

  水質自動監測儀器仍在發展之中,歐、美、日本、澳大利亞等國均有一些專業廠商生產。目前,經較成熟的常規專案有:水溫、PH、溶解氧(DO)、電導率、濁度、氧化還原電位(ORP)、流速和水位等。常用的監測專案有:COD、高錳酸鹽指數、 TOC、氨氮、總氮、總磷。其他還有:氟化物、氯化物、硝酸鹽、亞硝酸鹽、***、硫酸鹽、磷酸鹽、活性氯、TOD、BOD、UV、油類、酚、葉綠素、金屬離子(如六價鉻)等。

  目前的自動分析儀一般具有如下功能:自動量程轉換,遙控、標準輸出介面和數字顯示,自動清洗(在清洗時具有資料鎖定功能)、狀態自檢和報警功能(如:液體洩漏、管路堵塞、超出量程、儀器內部溫度過高、試劑用尺、高/低濃度、斷電等),幹運轉和斷電保護,來電自動恢復,COD、氨氮、TOC、總磷、總氮等儀器具有自動標定校正功能。

  3.2常規五引數分析儀

  常規五引數分析儀經常採用流通式多感測器測量池結構,無零點漂移,無需基線校正,具有一體化生物清洗及壓縮空氣清洗裝置。如:英國ABB公司生產的EIL7976型多引數分析儀、法國Polymetron公司生產的常規五引數分析儀、澳大利亞GREENSPAN公司生產的Aqualab型多引數分析儀(包括常規五引數、氨氮、磷酸鹽)。另一種型別(“4+1”型)常規五引數自動分析儀的代表是法國SERES公司生產的MP2000型多引數線上不質分析儀,其特點是儀器結構緊湊。

  常規五引數的測量原理分別為: 水溫為溫度感測器法(PlatinumRTD)、PH為玻璃或銻電極法、DO為金-銀膜電極法(Galvanic)、電導率為電極法(交流阻抗法)、濁度為光學法(透射原理或紅外散射原理)。

  3.3化學需氧量(COD)分析儀

  COD線上自動分析儀的主要技術原理有六種:(1)重鉻酸鉀消解-光度測量法;(2)重鉻酸鉀消解-庫侖滴定法;(3)重鉻酸鉀消解-氧化還原滴定法;(4)UV計(254nm);(5)氫氧基及臭氧(混和氧化劑)氧化-電化學測量法;(6)臭氧氧化-電化學測量法。

  從原理上講,方法(3)更接近國標方法,方法(2)也是推薦的統一方法。方法(1)在快速COD測定儀器上已經採用。方法(5)和方法(6)雖然不屬於國標或推薦方法,但鑑於其所具有的執行可等特點,在實際應用中,只需將其分析結果與國標方法進行比對試驗並進行適當的校正後,即可予以認可。但方法(4)用於表片水質COD,雖然在日本已得到較廣泛的應用,但歐美各國尚未應用(未得到行政主客部門的認可),在我國尚需開展相關的研究。

  從分析效能上講,線上COD儀的測量範圍一般在10(或30)~2000mg/l,因此,目前的線上COD儀僅能滿足汙染源線上自動監測的需要,難以應用於地表水的自動監測。另外,與採用電化學原理的儀器相比,採用消解-氧化還原滴定法、消解-光度法的儀器的分週期一般更長一些(10min~2h),前者一般為2~8min.

  從儀器結構上講, 採用電化學原理或UV計的線上COD儀的一般比採用消解-氧化還原滴定法、消解-光度法的儀器結構簡單,並且由於前者的進樣及試劑加入系統簡便(泵、管更少),所以不僅在操作上更方便,而且其執行可*性也更好。

  從維護的難易程度上講, 由於消解-氧化還原滴定法、消解-光度法所採用的試劑種類較多,泵管系統較複雜,因此在試劑的更換以及泵管的更換維護方面較煩瑣,維護週期比採用電化學原理的儀器要短,維護工作量大。

  從對環境的影響方面講,重鉻酸鉀消解-氧化還原滴定法(或光度法、或庫侖滴定法)均有鉻、汞的二次汙染問題,廢液需要特別的處理。而UV計法和電化學法(不包括庫侖滴定法)則不存在此類問題。

  3.4高錳酸鹽指數分析儀

  高錳酸鹽指數線上自動分析儀的主要技術原理有三種:(1)高錳酸鹽氧化-化學測量法;(2)高錳酸鹽氧化-電流/電位滴定法;(3)UV計法(與線上COD儀類似)。

  從原理上講,方法(1)和方法(2)並無本質的區別(只是終點指示方式的差異而已),在歐美和日本等國是法定方法,與我國的標準方法也是一致的。將方法(3)用於表徵水質高錳酸鹽指數的方法,在日本已得到較廣泛的應用,但在我國尚未推廣應用,也未得到行政主客部門的認可。

  從分析效能上講,目前的高錳酸鹽指數線上自動分析儀已能夠滿足地表水線上自動監測的需要。另外,與彩和化學方法的儀器相比,採用氧化還原滴定法的儀器的分析週期一般更長一些(2h),前者一般為15~60min.

  從儀器結構上講,兩種儀器的結構均比較複雜。

  3.5總有機碳(TOC)分析儀

  TOC自動分析儀在歐美、日本和澳大利亞等國的應用較廣泛,其主要技術原理有四種:(1)(催化)燃燒氧化-非分散紅外光度法(NDIR法);(2)UV催化-過硫酸鹽氧化-NDIR法;(3)UV-過硫酸鹽氧化-離子選擇電極法(ISE)法;(4)加熱-過硫酸鹽氧化-NDIR法;(5)UV-TOC分析計法。

  從原理上講,方示(1)更接近國標方法,但方法(2)~方法(4)在歐美等國也是法定方法。將方法(5)用於表徵水質TOC,雖然在日本已得到較廣泛的應用,但在歐美各國尚未得到行政主管部門的認可。

  從分析效能上講,目前的線上TOC儀完全能夠滿足汙染源線上自動監測的需要,並且由於其檢測限較低,應用於地表水的自動監測也是可行的。另外,線上TOC儀的分析週期一般較短(3~10min)。

  從儀器結構上講,除了增加無機碳去除單元外,各類線上TOC儀的結構一般比線上COD儀簡單一些。

  3.6氨氮和總氮分析儀

  氨氮線上自動分析儀的技術原理主要有三種:(1)氨氣敏電極電位法(PH電極法);(2)分光光度法;(3)傅立葉變換光譜法。線上氨氮儀等需要連續和間斷測量方式,在經過線上過濾裝置後,水樣測定值相對偏差較大。

  總氮線上自動分儀的主要技術原理有兩種:(1)過硫酸鹽消解-光度法;(2)密閉燃燒氧化-化學發光分析法。

  3.7磷酸鹽和總磷分析儀

  (反應性)磷酸鹽自動分析儀主要的技術原理為光度法。總磷線上自動分析儀的主要技術原理有:(1)過硫酸鹽消解-光度法;(2)紫外線照射-鉬催化加熱消解,FLA-光度法。

  從原理上講,過硫酸鹽消解-光度法是線上總氮和總磷儀的主選方法,也是各國的法定方法。基於密閉燃燒氧化-化學發光分析法的線上總氮儀以及基於紫外線照射-鉬催化加熱消解,FIA-光度法的線上總磷儀主要侷限於日本。前者是日本工業規格協會(JIS)認可的方法之一。

  從分析效能上講,目前的線上總氮、總磷儀已能滿足汙染源和地表水自動監測的需要,但靈敏度尚難以滿足評價一類、二類地表水(標準值分別為 0.04mg/l和0.02mg/l)水質的需要。另外,採用化學發光法、FIA-光度法的儀器的分析週期一般更短一些(10~30min),前者一般為 30~60min.

  從儀器結構上講,採用化不發光法或FIA-光度法的線上總氮、總磷儀的結構更簡單一些。

  3.8其他線上分析儀器

  TOD自動分析儀:技術原理一般為燃燒氧化-電極法。

  油類自動分析儀:技術原理一般為熒光光度法。

  酚類自動分析儀:技術原理一般為比色法。

  UV自動分析儀:技術原理為比色法(254nm)。具有簡單、快捷、價格低的特點。不適於地表水的自動線上監測,國外一般是用於汙染源的自動監測,並經常經換算表示成COD、TOC值。應用的前提條件是水質較穩定,在UV吸收訊號與COD或TOC值之間有較確定的線性相關關係。

  硝酸鹽和***自動分析儀:技術原理主要有:(1)離子選擇電極法;(2)光度法。

  氟化物和氯化物自動分析儀:技術原理一般為離子選擇電極法