汙水處理廠

[拼音]:lizimo dianjiefa

[英文]:ion exchange membrane cell electrolysis process

又稱膜電槽電解法,是利用陽離子交換膜將單元電解槽分隔為陽極室和陰極室,使電解產品分開的方法。離子膜電解法是在離子交換樹脂(見離子交換劑)的基礎上發展起來的一項新技術。利用離子交換膜對陰陽離子具有選擇透過的特性,容許帶一種電荷的離子通過而限制相反電荷的離子通過,以達到濃縮、脫鹽、淨化、提純以及電化合成的目的。這項技術已經用於氯鹼的生產,海水和苦鹹水的淡化,工業用水和超純水的製備,酶、維生素與氨基酸等藥品的精製,電鍍廢液的回收,放射性廢水的處理等方面,其中應用最廣泛、成效最顯著的是氯鹼工業。在氯鹼工業中,利用陽離子交換膜電解槽電解食鹽或氯化鉀水溶液來製造氯氣、氫氣和高純度的燒鹼(氫氧化鈉)或氫氧化鉀。1975年日本旭化成工業公司製成全氟羧酸型離子交換膜,首先實現離子膜電解法制燒鹼,同年日本實現工業化生產。

工藝流程

經過兩次精製的濃食鹽水溶液連續進入陽極室(圖1),

鈉離子在電場作用下透過陽離子交換膜向陰極室移動,進入陰極液的鈉離子連同陰極上電解水而產生的氫氧離子生成氫氧化鈉,同時在陰極上放出氫氣。食鹽水溶液中的氯離子受到膜的限制,基本上不能進入陰極室而在陽極上被氧化成為氯氣。部分氯化鈉電解後,剩餘的淡鹽水流出電解槽經脫除溶解氯,固體鹽重飽和以及精製後,返回陽極室,構成與水銀法類似的鹽水環路。離開陰極室的氫氧化鈉溶液一部分作為產品,一部分加入純水後返回陰極室。鹼液的迴圈有助於精確控制加入的水量,又能帶走電解槽內部產生的熱量。

離子膜電解槽

根據供電方式的不同,分為復極式和單極式兩種。復極式電解槽的各單元電解槽串聯相接,電解槽的總電壓為各個單元電解槽的電壓之和;電路中各臺電解槽並聯。單極式電解槽的各單元電解槽並聯相接,電解槽的總電流為各個單元電解槽的電流之和;電路中各臺電解槽串聯。有的離子膜電解槽為板式壓濾機型結構(圖2):在長方形的金屬框內有爆炸複合的鈦-鋼薄板隔開陽極室和陰極室,拉網狀的帶有活性塗層的金屬陽極和陰極分別焊接在隔板兩側的肋片上,離子膜夾在陰陽兩極之間構成一個單元電解槽。大約 100個左右的單元電解槽由液壓裝置組成一臺電解器。另外,還有類似板式換熱器的結構,由衝壓的輕型鈦板陽極、離子膜和衝壓的鎳板陰極夾在一起,構成單元電解槽。若干個單元電解槽夾在兩塊端板之間組成一臺電解槽。

離子交換膜

側鏈上帶有磺酸基和(或)羧酸基等陰離子官能團的全氟聚合物製成的薄膜。對離子膜的要求:

(1)陽離子選擇透過性好;

(2)電解質擴散率低;

(3)較高的化學穩定性和熱穩定性;

(4)機械強度高,不易變形;

(5)電阻小。現代陽離子交換膜大多為聚氟烴織物增強的全氟磺酸-全氟羧酸複合膜。面向陽極的一側為電阻較小的磺酸基;面向陰極的一側為含水量低的羧酸基,能抑制氫氧離子向陽極室移動而提高電流效率,有的還處理成為粗糙的表面,或附有微孔狀無機物薄膜,以增加全氟羧酸膜的親水性,減少氫氣泡在膜表面上的滯留。這種膜適用於兩極間距極小的所謂“零”極距或“膜”間隙的離子交換膜電解槽。

特點

(1)總能耗最低(與隔膜電解法和水銀電解法相比),在4000A/m2電流密度下,每噸燒鹼的直流電耗為7.56~7.92GJ(2100~2200kWh);

(2)燒鹼純度高,50%的氫氧化鈉鹼液,含氯化鈉50~60ppm;

(3)無水銀或石棉汙染環境的問題;

(4)操作、控制都比較容易;

(5)適應負荷變化的能力較大;

(6)要求用高質量的鹽水;

(7)離子膜的價格比較昂貴。

現狀和展望

80年代初,先進的離子膜可在 4000A/m2的電流密度下運轉,電流效率為95%~96%;可以直接生產濃度為35%的氫氧化鈉,離子膜的使用壽命約為2年。由於離子膜法具有較多的優點,今後新建的氯鹼生產裝置一般將採用離子膜法。現有的水銀法或隔膜法氯鹼廠也會有一部分在技術改造時轉換為離子膜法。