不對稱天線

[拼音]:duiliu chuanre

[英文]:convective heat transfer

依靠流體微團的巨集觀運動而進行的熱量傳遞。這是熱量傳遞的三種基本方式之一。化工生產中處理的物料大部分是流體,流體的加熱和冷卻都包含對流傳熱。在化工生產中,對流傳熱在習慣上專指流體與溫度不同於該流體的固體壁面直接接觸時相互之間的熱量傳遞。這實際上是對流傳熱和熱傳導兩種基本傳熱方式共同作用的傳熱過程。例如間壁式換熱器中的流體與間壁側面之間的熱量傳遞,反應器中固體物料或催化劑與流體之間的熱量傳遞,都是這樣的傳熱過程。

型別

按流體在傳熱過程中有無相態變化,對流傳熱分兩類:

(1)無相變對流傳熱。流體在換熱過程中不發生蒸發、凝結等相的變化,如水的加熱或冷卻。根據引起流體質點相對運動的原因,對流傳熱又分自然對流和強制對流。自然對流是由於流體內各部分密度不同而引起的流動(如散熱器旁熱空氣的向上流動);強制對流是流體在外力(如壓力)作用下產生的流動。強制對流時流體流速高,能加快熱量傳遞,因而工程上廣泛應用。

(2)有相變對流傳熱。流體在與壁面換熱過程中,本身發生了相態的變化。這一類對流傳熱包括冷凝傳熱和沸騰傳熱。

對流傳熱機理

流體的運動對傳熱過程有強烈影響。當邊界層中的流動完全處於層流狀態時,垂直於流動方向上的熱量傳遞雖然只能通過流體內部的導熱,但流體的流動造成了沿流動方向的溫度變化,使壁面處的溫度梯度增加,因而促進了傳熱。當邊界層中的流動是湍流時,壁面附近的流動結構包括湍流區、過渡區和層流底層。湍流區垂直於流動方向上的熱量傳遞除了熱傳導外,主要依靠不同溫度的微團之間劇烈混合,即依靠對流傳熱。此傳遞機理與湍流區中的動量傳遞機理十分類似。垂直於流動方向上的熱量通量為:

式中εh稱渦流熱擴散係數(與流體的流動狀況有關);λ為熱導率;cp、ρ分別為流體的等壓比熱容和密度;dT/dy為垂直於流動方向的溫度變化率。由於εh一般比λ大得多,故湍流區的對流傳熱熱阻很小,所以此區的溫度下降也很小。在層流底層中熱量傳遞只能靠熱傳導。由於流體的熱導率一般很小,所以即使該層很薄,仍是傳熱過程的主要熱阻,相應的溫度下降很大。過渡區的情況介於兩者之間,對流傳熱和熱傳導的作用都不能忽略(見圖)。

牛頓冷卻定律

關於流體與壁面之間的傳熱雖然可從求解能量方程得到溫度分佈,然後計算熱量通量和熱流量;但在工程上常用簡化處理辦法,即將熱流量φ與有關物理量的關係經驗地表示為牛頓冷卻定律:

φ=αAΔT

式中A為傳熱面積;ΔT為流體主體溫度(橫截面上的流體平均溫度)與壁面溫度之差;α為傳熱分系數,表示對流傳熱強度的一個引數,其倒數可表徵對流傳熱的熱阻。通過實驗來測定φ和ΔT,而A為已知,即可由上式算出α,通常將實驗結果整理成關聯式,以供設計使用。

對流傳熱的強化

由牛頓冷卻定律可知,任何可提高傳熱分系數以及增大傳熱面積和溫度差的措施,都能提高熱流量。在工業生產中,物料溫度由工藝決定,加熱和冷卻介質的溫度又受技術和經濟上的限制,因之傳熱溫度差的增加通常是受限制的。在增大傳熱面積方面,可採用波紋板、翅片管、螺紋管、小直徑管等,藉以提高單位體積內的傳熱面積。而提高對流傳熱分系數,是強化對流傳熱最基本的方法。無相變對流傳熱時,熱阻集中在層流底層,增強流體湍動或直接在層流底層中產生干擾,以減薄層流底層的厚度,是提高傳熱分系數的有效方法。提高對流傳熱分系數的措施包括增加壁面粗糙度,管內設定新增物(如插入螺旋圈片),氣流中加入固體細粒,利用噴嘴產生射流等。有相變對流傳熱的機理與無相變的不同,需採取不同措施進行強化(見沸騰傳熱、冷凝傳熱)。