電介質物理學

[拼音]:wanyou yinli

[外文]:universal gravitation

存在於任何兩個物體之間的由質量引起的相互吸引力,力的作用線約在兩物體質心的連線上,其大小與兩物體的質量成正比,與兩物體的距離平方成反比。萬有引力定律是I.牛頓追索地面上的物體受重力作用的原因而發現的,1687年正式發表。以m1、m2表示兩物體的質量,r表示兩者之間的距離,則相互吸引的力F為:

式中G稱為萬有引力常數。這就是萬有引力定律的數學表示式。嚴格地說,上式是對兩質點而言的。因為“兩個物體之間的距離”一語指的是兩個質點的距離。如果一個是質點,另一個是有限體,則可把有限體分割成許多質點,並求出它們引力的向量和,就能得到整個有限體對質點的作用力。牛頓曾證明:一個密度是到球心距離r的函式的球體對球外一質點的引力同整個球體質量集中在球心的情況無異。牛頓用萬有引力定律證明了開普勒定律、月球繞地球的運動、潮汐的成因和地球兩極較扁等自然現象。牛頓的萬有引力定律是天體力學的基礎。人造衛星、月球和行星探測器的軌道,都是以這個定律為基礎來計算的。萬有引力存在的實驗證明和引力常數G的測定是H.卡文迪什於1798年作出的。1859年,法國天文學家U.勒威耶發現水星近日點進動速率的數值與用萬有引力定律算得的數值有每百年38″(美國天文學家S.紐康的測定值為43″)的偏離。1915年,A.愛因斯坦創立廣義相對論,終於說明了這個問題,並預言光線在引力場中的偏折和光譜的紅移。天文學家還曾預言黑洞的存在,使廣義相對論進入了與宇宙演化有關的新境界。愛因斯坦以加速座標系和引力場的等效性否定了慣性座標系在宇宙空間的存在,又用引力場改變了空間特性。他認為物體在引力場的運動是沿四維彎曲的黎曼空間的短程線。但是在弱引力場的情況(例如太陽系)下,對許多力學問題,用牛頓萬有引力定律比用愛因斯坦的廣義相對論計算要簡單得多,而且兩者相差極微。對簡單的二體問題,由於“同時”概念混雜,難以用廣義相對論進行數學處理。

在粒子相互作用的微觀世界裡,萬有引力是最弱的一種,萬有引力與電磁力、核力的統一問題有待於科學家們的進一步努力。