關於動點軌跡方程的解題技巧

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性***也叫做必要性***;凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性***也叫做充分性***.

  【軌跡方程】就是與幾何軌跡對應的代數描述。

  一、求動點的軌跡方程的基本步驟

  ⒈建立適當的座標系,設出動點M的座標;

  ⒉寫出點M的集合;

  ⒊列出方程=0;

  ⒋化簡方程為最簡形式;

  ⒌檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、引數法和交軌法等。

  1.相關點法:用動點Q的座標x,y表示相關點P的座標x0、y0,然後代入點P的座標***x0,y0***所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  2.引數法:當動點座標x、y之間的直接關係難以找到時,往往先尋找x、y與某一變數t的關係,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做引數法。

  3.直譯法:直接將條件翻譯成等式,整理化簡後即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  4.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  ⒌交軌法:將兩動曲線方程中的引數消去,得到不含引數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  *直譯法:求動點軌跡方程的一般步驟

  ①建系——建立適當的座標系;

  ②設點——設軌跡上的任一點P***x,y***;

  ③列式——列出動點p所滿足的關係式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關於X,Y的方程式,並化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。