簡單美麗的數學手抄報設計圖

  數學是實際生活中必學運用到的,我們在學習數學的過程中也要掌握一些基本的方法。下面是由小編分享的美麗的數學手抄報效果圖,希望對你有用。

  簡單的數學手抄報圖片賞析

  數學手抄報資料:初二數學

  ***1***細心地發掘概念和公式

  很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數式的概念***用字母或數字表示的式子是代數式***中,很多同學忽略了“單個字母或數字也是代數式”。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯絡。這樣就不能很好的將學到的知識點與解題聯絡起來。三是,一部分同學不重視對數學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟於心,又怎能夠在題目中熟練應用呢?

  我們的建議是:更細心一點***觀察特例***,更深入一點***瞭解它在題目中的常見考點***,更熟練一點***無論它以什麼面目出現,我們都能夠應用自如***。

  ***2***總結相似的型別題目

  這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些型別題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以後,同學們會發現,有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重複的工作,很多相似的題目反覆做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。

  我們的建議是:“總結歸納”是將題目越做越少的最好辦法。

  ***3***收集自己的典型錯誤和不會的題目

  同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這一個反覆在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。

  數學手抄報內容:計算課

  一、為理解而教——積累數學活動經驗,啟用學生思維的生長點

  英國數學家、教育家懷特海說:“就教育而言,填鴨式灌輸的知識、呆滯的思想不僅沒有什麼意義,往往極其有害。”並強調指出,“不能讓知識僵化,而要讓它生動活潑起來——這是所有教育的核心問題”。兒童的運算能力不僅表現為在理解算理的基礎上能夠正確地進行運算,還表現為能根據具體情境主動尋求合理簡潔的運算途徑和方法來解決問題,不斷地積累數學計算的經驗。趙老師和盧老師在設計《兩位數減一位數***退位***》一課的教學時,非常重視“讓計算生動活潑起來”,即讓學生感受到思維生長的力量,設計中始終關注:問題由學生髮現,演算法由學生嘗試,算理由學生探究。學生在觀察、操作中思考,在比較、優化中選擇,在應用、拓展中感悟。

  ***一***引發自主發現問題的意識

  問題意識是指成為學生感知和思維的物件,從而在學生心裡造成一種懸而未決但又必須解決的求知狀態。兩位教師呈現了課本主題情境圖後,都通過“從圖上你能知道哪些數學資訊”和“你能提出用減法計算的數學問題嗎”的引導,鼓勵學生提出了用減法計算的三個問題,並列出三道算式,即34―30、30―8、34―8,激發了探索退位減法的主動性。

  ***二***參與主動建構演算法的過程

  學生數學學習的過程是在教師引導下主動發現、自主探究的建構過程。例如,在探究30―8和34―8的演算法過程中,兩位教師都讓每一個學生嘗試參與,充分呼叫原有的計算基礎和思維經驗,想到可以有擺小棒、撥計數器和直介面算等方法來計算。尤其是34―8的演算法探究,學生結合直觀操作演示,想到了三種不同的計算方法:一是“先算10-8=2,再算24+2=26”;二是“先算14―8=6,再算20+6=26”;三是“先算34―4=30,再算30―4=26”。學生在動手操作中理解了算理,在經歷探究中明晰了演算法,原本枯燥乏味的計算過程因有了學生的主動建構而變得“生動活潑起來”。

  ***三***關注數學活動經驗的積累

  數學活動經驗的積累是提高學生數學素養的重要標誌。數學活動經驗要在“做”的過程和“思考”的過程中積澱,是在數學學習活動中逐步積累的。我們知道,數學活動經驗具有很強的遷移性和認同性、主體性和實踐性的特徵,讓學生親歷數學活動,就是幫助學生儲存和啟用、擴充套件和完善認知結構,從而不斷豐富數學活動經驗。例如,在30―8和34―8的教學中,兩位教師通過學生主動建構的過程,即在“擺一擺、算一算”“比一比、說一說”“問一問、想一想”中,學生主動地從事觀察、操作、實驗、猜測、驗證、推理與交流等數學活動,運算的經驗不斷應用,比較的方法不斷豐富,探究的能力不斷培育,思考的品質不斷提升。這樣的數學活動經驗的積累是一個動態的過程,是在體驗中內化,在感悟中提升的過程。

  二、為思維而教——滲透基本數學思想,催生學生思維的深刻性

  數學思想蘊含在數學知識形成、發展和應用的過程中。計算課,學生的數學思維不能缺席。在探究算理、明晰演算法的過程中要逐步滲透基本的數學思想方法,讓學生觸控數學思想方法的精神核心,完善認知結構,培養思維品質,形成數學觀念。

  ***一***充分思考,觸控思想

  “有益的思考方式和應有的思維習慣應放在數學教育的首位。”***波利亞語***數學教學中要賦予學生思考的空間,在思考中生長數學思想的力量,感受思維脈搏的跳動。兩位教師的教學設計中很好地滲透了抽象的思想,引導學生探究退位減法時,經歷“直觀操作—圖式表象—形成演算法”的過程,將怎樣想的過程用小棒擺出來,將怎樣算的在計數器上撥出來,將動手操作的過程說出來。擺小棒、撥算珠和圖式、算式融為一個整體,在直觀的操作中學生逐漸明晰算理、有序思維,智慧之花在手指尖上自然綻放。

  ***二***優化整合,催生思維

  演算法的選擇與優化是實際教學中比較難把握的策略。演算法優化是指小學數學教學中根據學生的認知特點、積累的運算經驗、以及學生擅長的思維方式,引導學生強化某種思維方式,從而使學生獲得一種基於自身個性的優化演算法,它是一種重要的數學思想。趙老師呈現了34―8的三種演算法以後,通過“同學們想出了幾種不同的思考方法”和“這些方法,你喜歡用哪一種”的啟發提問,讓學生的思維在背景中豐富起來。而盧老師則通過“剛才所有擺小棒的計算過程中都有哪一步?為什麼要拆開一捆”“比較30―8和34―8計算過程有什麼相同處” 等問題,讓學生的思維鑲嵌在比較的數學活動中,從而獲得更生動而鮮明的理解。

  ***三***傾聽交流,提升品質

  學會數學交流,可以啟迪數學思考的深刻性。兩位教師在引導學生探究34―8多樣化的演算法時都為學生的交流提供了豐富的學習素材,學生可以展示自己的不同觀點,傾聽他人的想法,理解別人的演算法,形成初步的計算策略。不同的演算法在師生的追問和傾聽中互動交流,學生在交流中慢慢學會合作,學會分享,學會互相欣賞,個性在交流中得到發展。在這個過程中教師與學生也一起分享彼此的思考、經驗和知識,交流彼此的情感、體驗與觀念,從而達到共識、共享、共進。這樣的平等對話,不僅是一種認識活動過程,更是一種人與人之間平等的精神交流。意味著主體的凸顯、個性的表現、創造性的解放、生命成長的過程。

  三、為自由而教——分享個性化地表達,發展學生思維的多樣化

  德國數學家康托爾說:“數學的本質在於思考的充分自由。” 而“積極、富有創新精神的思維習慣,只有在充分自由的環境下才能產生”。***懷特海語***在數學教學,尤其是計算教學中,這種“充分自由的環境”需要教師首先要為兒童應在營造一種安全、愜意、享受的學習場所,還需要教師能準確把握學生的學習起點、理解學生的學習需要、尊重學生的思維狀態,讓學生充分敞開心靈、放飛思維,富有個性地參與操作與創造、體驗與感悟。

  ***一***尊重選擇,倡導自我建構

  提倡演算法多樣化,其實質是尊重學生的自我構建和自我理解,倡導學生富有個性地學習與思考。兩位教師在教學中都能尊重每一個學生的個性特徵,允許不同的學生從不同的角度認識問題,採用不同的方式表達自己的想法,用不同的知識與方法解決問題。每個學生都可以發表自己的觀點,傾聽同伴的想法,感受演算法的多樣化與靈活性,並比較不同方法的特點。

  ***二***關注差異,拓寬思維空間

  由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。研究表明,由於學生的興趣、需要、先前經驗的不同,學生在課堂上的參與度是存在個體差異的,這種差異既有對同一問題在觀點上的激烈爭論,也有在解決問題方式方法上的不同選擇;既有不同學習風格的體現,也有獨特優勢潛能的挖掘;既有個體認知思維能力的高低不同,也有個體興趣、情感、態度等體驗上的獨特性……所有這些差異都構成了課堂教學資源的豐富性,教師和學生利用這種差異資源不斷生髮新的觀點,不斷生長新的思維,不斷迸發新的問題。兩位教師的教學設計充分關注學生在學習過程中的差異,有效整合多元化的思維方式,讓學生憑藉已有的知識經驗進行充分的探索。尤其是趙老師的設計,在鞏固應用部分,通過題組對比練習、變式拓展練習、遊戲激趣練習、實際應用練習等,培養學生思維的變通性、靈敏性和批判性,學生的思維在多元的學習過程中不斷生長,多樣化思維的策略在比較選擇中逐步延展。

  在實際的教學中,有些老師簡單地將“演算法的多樣化”與“演算法的優化”相對立,認為強調多樣化就排斥了優化,認同優化就摒棄了多樣化。其實,演算法的多樣化本身包含著優化的過程,優化的過程也是演算法多樣化的一個持續生成,兩者互補共生,是一個動態平衡的過程。筆者在此有一個建議:我們在設計本節課的教學時,還可以進一步讓學生自由敞開心靈,豐富學生多樣化的思維:如關於34-8的計算探索,可以提供更開放自由的學習環境,充分鼓勵學生多樣化地探求解決的方法,有學生會用倒著數數的方法,即33,32,31,30,29,28,27,26,算出34-8=26。事實上,學生在解決生活中的數學問題時,會根據實際需要選擇適合的方法來計算。例如,計算40-1時,倒著數數的方法也是很便捷的計算,而學生能合理選擇適當的方法來解決實際問題是數學教學應該培養的一種素養。


猜你喜歡: