雷聲和閃電是怎麼形成的

  雷陣雨來時,往往會出現狂風大作、雷雨交加的天氣現象,伴隨著隆隆雷聲和道道閃電,那麼?小編在此整理了雷聲和閃電的形成原因,供大家參閱,希望大家在閱讀過程中有所收穫!

  雷聲形成原因

  閃電通路中的空氣突然劇烈增熱,使它的溫度高達15000—20000℃,因而造成空氣急劇膨脹,通道附近的氣壓可增至一百個大氣壓以上。緊接著,又發生迅速冷卻,空氣很快收縮,壓力減低。這一驟脹驟縮都發生在千分之幾秒的短暫時間內,所以在閃電爆發的一剎那間,會產生衝擊波。衝擊波以5000米/秒的速度向四面八方傳播,在傳播過程中,它的能量很快衰減,而波長則逐漸增長。在閃電發生後0.1—0.3秒,衝擊波就演變成聲波,這就是我們聽見的雷聲。 在雷雨天氣中,上升氣流和下降氣流推動水分子互相作用,釋放出電子從而增強了電場強度,這些電子最終以接近光速的速度穿越空氣。依據德懷爾的閃電形成理論,這些高速電子在電場中伽馬射線或者X射線釋放的能量作用下,與大氣層其他微粒發生碰撞便產生強大的雷鳴聲,並釋放出電荷。

  如果雲中閃電時,雷聲在雲裡面多次反射,在爆炸波分解時,又產生許多頻率不同的聲波,它們互相干擾,使人們聽起來感到聲音沉悶,這就是我們聽到的悶雷。一般說來,悶雷的響度比炸雷來得小,也沒有炸雷那麼嚇人。 拉磨雷是長時間的悶雷。雷聲拖長的原因主要是聲波在雲內的多次反射以及遠近高低不同的多次閃電所產生的效果。此外聲波遇到山峰、建築物或地面時,也產生反射。有的聲波要經過多次反射。這多次反射有可能在很短的時間間隔內先後傳入我們的耳朵。這時,我們聽起來,就覺得雷聲沉悶而悠長,有如拉磨之感。

  閃電形成原因

  閃電是雲與雲之間、雲與地之間或者雲體內各部位之間的強烈放電現象***一般發生在積雨雲中***。

  通常是暴風雲***積雨雲***產生電荷,底層為陰電,頂層為陽電,而且還在地面產生陽電荷,如影隨形地跟著雲移動。正電荷和負電荷彼此相吸,但空氣卻不是良好的傳導體。正電荷奔向樹木、山丘、高大建築物的頂端甚至人體之上,企圖和帶有負電的雲層相遇;負電荷枝狀的觸角則向下伸展,越向下伸越接近地面。最後正負電荷終於克服空氣的阻障而連線上。巨大的電流沿著一條傳導氣道從地面直向雲湧去,產生出一道明亮奪目的閃光。

  一道閃電的長度可能只有數百米***最短的為100米***,但最長可達數千米。閃電的溫度,從攝氏一萬七千度至二萬八千度不等,也就是等於太陽表面溫度的3~5倍。閃電的極度高熱使沿途空氣劇烈膨脹。空氣移動迅速,因此形成波浪併發出聲音。

  如果我們在兩根電極之間加很高的電壓,並把它們慢慢地靠近。當兩根電極靠近到一定的距離時,在它們之間就會出現電火花,這就是所謂“弧光放電”現象。

  雷雨雲所產生的閃電,與上面所說的弧光放電非常相似,只不過閃電是轉瞬即逝,而電極之間的火花卻可以長時間存在。因為在兩根電極之間的高電壓可以人為地維持很久,而雷雨雲中的電荷經放電後很難馬上補充。當聚集的電荷達到一定的數量時,在雲內不同部位之間或者雲與地面之間就形成了很強的電場。電場強度平均可以達到幾千伏特/釐米,區域性區域可以高達1萬伏特/釐米。這麼強的電場,足以把雲內外的大氣層擊穿,於是在雲與地面之間或者在雲的不同部位之間以及不同雲塊之間激發出耀眼的閃光。這就是人們常說的閃電。

  雷雨雲的帶電原理

  水滴破裂效應:雲中水滴在高速氣流中作激烈運動,分裂成一些帶負電的較大顆粒和帶正電的較小顆粒,後者同時被上升氣流攜帶到高空,前者落在低空,這樣正負兩種電荷便在雲層中被分離,這也就是造成90%的雲層下部帶負電的原因。

  吸電荷效應:由於宇宙射線或其它電離作用,大氣中存在正負離子,又因為空間存在電場,在電場力的作用下正負離子在雲的上下層分別積累,從而使雷雨雲帶電,又稱感應起電。

  水滴凍冰效應:水滴在結冰過程中會產生電荷,冰晶帶正電荷,水帶負電荷,當上升氣流把冰晶上的水分帶走時,就會導致電荷的分離,而使雷雨雲帶電。

  溫差起電效應:實驗證明在冰塊中存在著正離子***H+***和負離子***OH-***,在溫度發生變化時,離子發生擴散運動並相互分離。積雨雲中的冰晶和雹粒在對流的碰撞和摩擦運動中會造成溫度差異,並因溫差起電,帶電的離子又因重力和氣候作用而分離擴散,最後達到一定的動態平衡。

  至於到底是由哪種效應,或者哪幾種效應共同作用的結果,科學界尚無定論,並且分歧很大。