建築技術經濟

[拼音]:lashen he yasuo

[英文]:tension and compression

工程結構構件的基本變形形式之一。對於受拉伸或壓縮的等截面直杆(稜柱形杆),根據杆受力時橫截面保持為平面的假設,則橫截面上無剪應力τ,而其正應力σ為均勻分佈,其值等於軸力N 除以橫截面面積A,即σ=N/A;當材料線上彈性範圍內工作時,根據胡克定律(見材料力學),杆內一點處的軸向(縱向)線應變為ε=σ/E(E為材料的拉、壓彈性模量);在軸力N 為常量的長度L範圍內,絕對線變形ΔL的計算公式為ΔL=NL/EA。

事實上,以上變形假設和結論並不普遍適用於所有稜柱形杆。如薄壁的 Z形截面杆在通過橫截面形心的拉力作用下,除發生伸長變形外,兩個翼緣還在各自的縱向平面內彎曲(圖1),即使在離外力作用截面相當遠處,橫截面也不再保持為平面,其上的正應力並非均勻分佈,且有剪應力存在;這一現象已為薄壁杆件的約束扭轉理論所論證。顯然就靜力學的觀點來看,此時整個橫截面上的正應力卻仍然只組成通過橫截面形心的合力N,而剪應力不組成合力和合力矩。由此可知,根據杆件橫截面一邊分離體的平衡條件確定橫截面上內力,並據此計算應力,只是一種初等的方法。

又如變截面直杆受拉伸(壓縮)時,橫截面上正應力亦非均勻分佈,且有剪應力存在。根據彈性力學的分析結果,矩形截面的等厚度楔形板受拉伸時(圖2),如果頂角α=20°,則橫截面上的最大正應力與按公式 σ=N/A 算得的值相比,兩者相差2%,而當 α=60°時,兩者相差竟達20%。

在工程計算中,對於拉桿通常只要求保證其具有足夠的強度,即工作應力不超過容許應力(材料的破壞應力除以安全係數);必要時也要求控制其變形量。對於壓桿,其正常工作的條件往往不是受強度控制,而是受穩定性控制(見柱的基本理論)。

參考書目

S.P.Timoshenko,J.M.Gere,Mechanics of materials,Van Nostrand Reinhold Co.,New York,1972.