錦蛇屬

[拼音]:Dilikelei L hanshu

[英文]:Dirichlet L-function

又稱對應於模q的特徵ⅹ(n)的狄利克雷L函式, 即函式

,其中q≥1,ⅹ(n)是模q的一個特徵,復變數s=σ+it,σ>1。它在q=1時就是黎曼ζ函式。這類函式最初是由P.G.L.狄利克雷在研究算術級數中的素數分佈問題時引進的。它的性質和作用,都與黎曼ζ函式類似,在許多數論問題中有重要應用。它的主要性質有:

(1)當σ>1時,

,式中

表示對全體素數求積。因而L(s,ⅹ)≠0 (σ>1)。

(2)當ⅹ0是模q的主特徵時,

於是,通過ζ(s)就把L(s,ⅹ0)解析開拓到全平面。

(3)當ⅹ是模q的非主特徵時,一定存在惟一的一個模q*,使當σ>1時,有

(4)當ⅹ是模q的原特徵時,L(s,ⅹ)可解析開拓為整函式,且滿足函式方程

式中

τ(ⅹ)為僅與ⅹ有關的常數,且滿足

塣表ⅹ的共軛特徵,即

(5)對任意的模q的特徵ⅹ,有L(1,ⅹ)≠0。

(6)設ⅹ是模q的原特徵,那麼s=-(2n+α(ⅹ))(n =0,1,2,…)是L(s,ⅹ)的一級零點,稱為“無聊零點”;L(s,ⅹ)可能有的其他零點(稱為“非無聊零點”)一定都位於帶形區域0≤σ≤1中;L(s,ⅹ)確有無窮多個非無聊零點。

(7)設T >0,以N(T,ⅹ)表 L(s,ⅹ)在區域0≤σ≤1,|t|≤T 中的零點個數。因此,當ⅹ 是模q的原特徵和T≥2時,有

(8)設T>0,

,以N(α,T,ⅹ)表L(s,ⅹ)在區域α≤σ≤1,|t|≤T中的零點個數。再設

,其中Σ表對模q的所有特徵求和。因此,當 T≥2時,有

。此結果已被改進和推廣,通常稱之為 L函式的零點密度定理。

(9)在直線σ=1上,L(s,ⅹ)≠0。由此,對任意固定的q,可推出算術級數中的素數定理。

(10)存在絕對正常數X1,使得對任意固定的模q,在所有的函式L(s,ⅹ)(ⅹ mod q)中,僅可能除去一個例外函式外,均在區域

內無零點。如果這樣的例外函式L(s,塣)存在,那麼塣一定是模q 的實的非主特徵,且 L(s,塣) 在上述區域內只有一個一級實零點戓 。這一性質是狄利克雷L函式與黎曼ζ函式的一個主要差別。研究對應於實特徵的L函式的實零點,是L函式論的最重要問題之一。

A. 佩奇於1935年證明了:存在絕對正常數X2,使得對任意的實原特徵ⅹ modq,q≥3,必有 L(1,ⅹ)≥X2q-1/2。由此可推出,存在絕對正常數X3,使得對任意的實特徵 ⅹ mod q,q≥3,當

時,L(σ,ⅹ)≠0。

C.L.西格爾於1936年證明了:對任給的正數ε,存在正常數c3(ε),使得對任意的實原特徵ⅹmodq, q≥3,必有

。由此推出,對任給正數ε,必有正常數 c4(ε),使得對任意的實特徵 ⅹ modq,q≥3,當

時,L(σ,ⅹ)≠0。

C. L. 西格爾的結果雖然優於A. 佩奇的結果,但是常數X3(ε)和X4(ε)至今沒有辦法計算出來。

從性質⑩、、可推得有餘項估計的算術級數中的素數定理(見素數分佈)。類似於黎曼假設,有所謂廣義黎曼假設,即猜測所有的狄利克雷L函式的非無聊零點都位於直線σ=1/2上,通常簡記作GRH。大量的數值計算以及理論上的探討都支援這一假設,但它至今還沒有被證明或否定。從GRH可推出一系列重要的數論結果,雖然都是一些假設性的結果(其中有的已被無條件地證明了),但是卻指出了研究 L函式零點的重要意義和方向。

參考書目

K.Prachar,Primzahlverteilung,Springer-Verlag, Berlin,1957.

H.Davenport,Multiplicative Number Theory,2nd ed.,Springer-Verlag, Berlin, 1980.