生物學研究機構(中國)

[拼音]:zhongxin jixian dingli

[外文]:central limit theorem

概率論中討論隨機變數序列部分和的分佈漸近於正態分佈的一類定理。1920年,G.波伊亞稱這類定理為中心極限定理。它是概率論中最重要的一類定理,有著廣泛的實際背景。在自然界與生產中,一些現象受到許多相互獨立的隨機因素的影響,如果每個因素所產生的影響都很微小時,總的影響可以看作是服從正態分佈的。中心極限定理就是從數學上證明了這一現象。

獨立隨機變數的中心極限定理

歷史上最初的中心極限定理是討論 n重伯努利試驗(見二項分佈)中,事件A出現的次數μn漸近於正態分佈的問題。若記事件A出現的概率為p(A)=p,不出現的概率為q=1-p,1716年前後,A.棣莫弗對p=1/2作了討論,隨後,P.-S.拉普拉斯推廣到一般情形,得到:當-∞<α

式中

是標準正態分佈函式,這就是棣莫弗-拉普拉斯定理。為討論一般形式的中心極限定理,Α.М.李亞普諾夫改進了∏.Л.切比雪夫創立的矩法,給出了獨立隨機變數序列{xn}服從中心極限定理的李亞普諾夫條件,其結論稱為李亞普諾夫定理:記數學期望

方差

部分和

(稱為Sn的標準化)。若存在正數δ>0,使當

那麼當n→∞,

的分佈漸近於標準正態分佈

,即

隨著特徵函式(見概率分佈)的引入,中心極限定理的研究得到了很快的發展。20世紀20年代,Y.W.林德伯格和P.萊維證明了林德伯格-萊維定理:對於獨立同分布的隨機變數序列{xn},當Exk=α及varxk=σ2有限時,部分和Sn的標準化

的分佈漸近於標準正態分佈。它在數理統計的大樣本理論中有重要的應用。1935年,林德伯格和W.費勒又進一步解決了獨立隨機變數序列的中心極限定理的一般情形,即林德伯格-費勒定理:

且費勒條件

成立,當且僅當林德伯格條件成立,即對任給正實數τ,

式中Fk(x)=p(xk≤x)。這個結果使長期以來作為概率論中心議題之一的關於獨立隨機變數序列的中心極限定理得到根本解決。前述諸結果都是它的推論。

此後中心極限定理的研究基本上圍繞幾個方面進行:一是減弱對隨機變數獨立性的要求,考慮具有某種相依性的隨機變數;一是討論向標準正態密度函式收斂的問題;再就是估計向正態分佈收斂的速度及有關問題。

區域性極限定理

向正態密度函式收斂的問題雖然在概率論的早期工作中就出現了,但是一般性結果直至20世紀中期才得到。在棣莫弗-拉普拉斯定理形成的過程中,首先解決的是,在 n重伯努利試驗中,事件 A出現的次數μn等於k的概率 pn(k)=p(μn=k)漸近於正態密度的問題,即所謂棣莫弗-拉普拉斯區域性極限定理:在任給的有限區間[с,d]中,對於滿足

的k,一致地成立,

,式中

是標準正態密度函式。這一結論的推廣就是討論取值為b+Nk(N=0,±1,…)的獨立隨機變數序列{xk}的相應問題,即格點極限定理。對於獨立同分布情形,1948年Б.Β.格涅堅科給出了相當簡明的充分必要條件;對於獨立非同分佈情形,於50年代也給出了充分條件。當獨立隨機變數序列{xk}的標準化部分和

的密度函式pn(x)存在時,討論pn(x)向標準正態密度函式

(x)收斂的問題稱為區域性極限定理。格涅堅科也於1953年對獨立同分布情形給出了十分簡潔的充分必要條件,即:當且僅當存在某N,使pN(x)有界時,成立

對於獨立非同分佈情形,也在一定假設下由Β.Β.彼得羅夫給出了充分必要條件。

相依隨機變數的中心極限定理

這一問題至今仍是許多概率論學者所注意的課題,其中討論得較多且獲得實際應用的有m 相依隨機變數序列、強平穩隨機變數序列、鞅、馬爾可夫過程及其他泛函,以及各種型別的統計量序列。對於這些序列在附加一定條件時,中心極限定理也成立。這便使得許多實際問題中的隨機變數或隨機過程可視為正態的。

收斂速度的估計

為了討論向正態分佈收斂的速度,20世紀40年代,先後由A.C.貝里及C.G.埃森給出了下述著名的埃森不等式:對於獨立隨機變數序列{xn},記其標準化部分和

的分佈函式為Fn(x),當

(k=1,2,…)時,便有

其中A是常數,

這一不等式給出了向正態分佈收斂時誤差的精確估計。這方面的研究已相當深入。

大偏差定理

對於獨立同分布的隨機變數序列{xn},若

,則對標準化部分和

及任意的M>0,當0≤x≤M時,一致地成立:

如果x的上界M隨著n的增大而單調趨於無窮,則與上述結果類似的定理稱為大偏差定理。這類結果在諸如重對數律(見大數律)的研究中是很重要的。確切地說,設Mn隨n單調上升,且

如果成立:

則稱對 Mn大偏差定理成立。1938年,H.克拉默在漸近展開的基礎上證明,若存在正常數H,使當|t|

則對

大偏差定理成立。以後,ю.Β.林尼克等又給出了對

(其中b)為正常數,

),大偏差定理成立的充分必要條件。大偏差定理還有種種重要的推廣,正吸引著一些概率論學者的注意。

普遍極限定理

早在20世紀30年代,就開始注意到如下普遍極限問題:考察在每一行內獨立的隨機變數陣列

的行和

對於適當選取的常數An,隨機變數Sn-An的極限分佈有哪些?收斂的充分必要條件是什麼?這是獨立隨機變數和的極限定理的最一般提法,到40年代中期,已獲得較完滿的解決。可以證明,在適當條件下,這一類極限分佈是無窮可分分佈。記分佈函式F(x)的特徵函式為ƒ(t),若對任一正整數n,有特徵函式ƒn(x)使得ƒ(t)=[ƒn(t)]n,就稱分佈函式F(x)(對應地,特徵函式ƒ(t))為無窮可分的。單點分佈、泊松分佈、正態分佈、柯西分佈(見概率分佈)等都是無窮可分分佈。無窮可分的特徵函式ƒ(t)有著名的萊維-辛欽表示

式中引數у 是實數,G(u)是滿足G(-∞)=0的有界非降函式,稱為 ƒ(t)的萊維-辛欽譜函式。ƒ(t)的另一表示是

此公式稱為萊維表示。

若對隨機變數xnk不加任何限制,則任一分佈都可作為某個陣列的行和Sn的極限分佈。按照物理學的啟示,在30年代就提出了無窮小條件的概念,這一條件要求Sn的每一個別加項xnk,當n很大時,所起的作用都很微小:即對任何

Α.Я.辛欽於1937年證明,滿足無窮小條件的獨立隨機變數陣列{xnk}的行和Sn,對於適當的常數An,Sn-An的可能的極限分佈的全體,就是無窮可分分佈族。隨後,1944年格涅堅科利用萊維-辛欽表示,給出了Sn的分佈函式收斂於無窮可分分佈函式F(x)的充分必要條件是:

(1)

(2)

式中

;τ是任給的常數;у及G(x)分別是 F(x)的特徵函式的萊維-辛欽表示式中的引數及譜函式,而

是指在G(x)的一切連續點上Fn(x)→G(x),且Fn(+∞)→G(+∞),Fn(-∞)→G(-∞)。1947年,中國數學家許寶也曾經獨立地給出了滿足無窮小條件的獨立隨機變數陣列的行和依分佈收斂於某無窮可分分佈的充分必要條件。

由普遍極限定理,可列出向正態分佈、泊松分佈及退化分佈收斂的最一般條件。例如,滿足無窮小條件的獨立陣列的行和向正態分佈 N(α,σ2)收斂的充分必要條件是:

(1)對任給

(2)存在ε>0,使

(3)存在ε>0,使

這是中心極限定理的最一般結果。林德伯格-費勒定理等都可由它推出。

在討論普遍極限定理的同時,辛欽於1936年考慮了限於獨立隨機變數序列{xn}的“普遍極限問題”,就是討論對適當選取的常數

B

n>0與An,

的極限分佈族及依分佈收斂的條件。在無窮小條件的限制下,這類

的極限分佈族是無窮可分分佈族的一個子族,叫做L族。萊維在1946年運用無窮可分特徵函式的萊維表示給出了F(x)屬於L族的充分必要條件。隨後,格涅堅科等又給出了

的分佈向L族某分佈收斂的充分必要條件。

當隨機變數序列{xn}限於獨立且同分布時,

的極限分佈族就稱為穩定律族φ,顯然 φ是L族的子族。萊維與辛欽於1936年通過特徵函式的另一種特定的表示給出了分佈函式F(x)為穩定律的充分必要條件。萊維、辛欽與費勒又各自獨立地給出了獨立同分布為 F0(x)的隨機變數序列{xn}服從中心極限定理的充分必要條件是

格涅堅科和W.多布林還各自獨立地給出了收斂於某穩定律的充分必要條件。

極限定理是概率論的重要內容,也是數理統計的基石之一,其理論成果也比較完美。長期以來,對於極限定理的研究所形成的概率論分析方法,影響著概率論的發展。同時新的極限理論問題也在實際中不斷產生。