武都縣

[拼音]:liangzi lixue de weiraolun

[英文]:perturbation theory in quantum mechanics

解薛定諤方程的一種常用的近似方法。一個量子體系,如果總哈密頓量的各部分具有不同的數量級,又對於它精確求解薛定諤方程有困難,但對於哈密頓量的主要部分可以精確求解,便可先略去次要部分,對簡化的薛定諤方程求出精確解;再從簡化問題的精確解出發,把略去的次要部分對系統的影響逐級考慮進去,從而得出逐步接近於原來問題精確解的各級近似解。這種方法稱為微擾論。

對於哈密頓量H不顯含時間的體系,其不含時間的薛定諤方程為

(1)

如果

(2)

其中

為未受微擾的哈密頓算符(主要部分),

為微擾項(次要部分),

,λ是用來表示微擾強度特徵的小引數。若

的本徵方程

(3)

已解出,

是未受微擾體系的能量,

是與之相應的波函式。當考慮到

的作用後,體系的能量與波函式將發生微小變化,此變化依賴於引數λ,於是體系能量和波函式可按λ的冪次作微擾展開

(4)

(5)

當λ=0時,顯然有

,且E=E(0),ψ=ψ(0)。將式(4)、(5)代入式(1),按λ冪次得到一系列確定E(0)、ψ(0),E(1)、ψ(1),…的等式。實際上λ的冪次標誌著數量級的大小,依次地,E(0)、ψ(0)分別為E、ψ的零級近似能量和波函式,它們已由式(3)解出,由零級近似解以及

,可進一步得到能量和波函式一級修正值E(1)和ψ(1),也就是得到了E、ψ的一級近似解E(0)+ E(1)、ψ(0)+ψ(1),以此類推,可逐級求出高階近似解。計算表明,準確到n(n=1,2,…)級近似的能量等於

對於歸一化的第n-1級近似波函式下的平均值。以上是定態微擾論的物理思想。

當體系的哈密頓量顯含時間時,體系無確定能量,只要求波函式的近似解,處理問題的基本思想與定態微擾論相同,所不同的是將解不含時間的薛定諤方程改為解含時間的薛定諤方程。這種微擾論是含時間的微擾論。微擾論的具體形式雖是多種多樣的,但都體現了這樣一個特點:微擾項對未受微擾體系的解影響很小,可以通過逐級近似求解。

利用微擾論處理實際問題時,如果

小得多,使得微擾展開式收斂得較快,就只要計算一、二級微擾便可得到較為滿意的結果。量子力學中的微擾論廣泛地應用於原子和分子物理學中,它常與量子力學的變分法等近似方法結合起來使用。