脂環化合物

[拼音]:tuchu

[外文]:synapse

兩個神經元之間或神經元與效應器細胞之間相互接觸、並藉以傳遞資訊的部位。synapse一詞首先由英國神經生理學家C.S.謝靈頓19世紀末(1897)研究脊髓反射時引入生理學,用以表示中樞神經系統神經元之間相互接觸並實現功能聯絡的部位。而後,又被推廣用來表示神經與效應器細胞間的功能關係部位。synapse來自希臘語,原意是“接觸”或“接點”。

突觸前細胞藉助化學訊號,即遞質(見神經遞質、受體),將資訊轉送到突觸後細胞者,稱化學突觸,藉助於電訊號傳遞資訊者,稱電突觸。根據突觸前細胞傳來的訊號,是使突觸後細胞的興奮性上升或產生興奮還是使其興奮性下降或不易產生興奮,化學和電突觸都又相應地被分為興奮性突觸和抑制性突觸。螯蝦腹神經索中,外側與運動巨大纖維間形成的突觸便是興奮性電突觸。在螯蝦螯肢開肌上既有興奮性,也有抑制性化學突觸。此外,尚發現一些同時是化學又是電的混合突觸。

結構

化學突觸或電突觸均由突觸前、後膜以及兩膜間的窄縫──突觸間隙所構成(見圖),但兩者有著明顯差異。胞體與胞體、樹突與樹突以及軸突與軸突之間都有突觸形成,但常見的是某神經元的軸突與另一神經元的樹突間所形成的軸突-樹突突觸,以及與胞體形成的軸突-胞體突觸。

當軸突末梢與另一神經元的樹突或胞體形成化學突觸時,往往先形成膨大,稱突觸扣。扣內可見數量眾多的直徑在 30~150奈米的球形小泡,稱突觸泡,還有較多的線粒體。遞質貯存於突觸泡內。一般認為,直徑為30~50奈米的電子透明小泡內貯存的是乙醯膽鹼 (Ach)或氨基酸類遞質。有些突觸扣含有直徑 80~150奈米的帶芯突觸泡和一些電子密度不同的較小突觸泡,這些突觸泡可能含有多肽。那些以生物胺為遞質的突觸內也含有不同電子密度的或大或小的突觸泡。突觸膜增厚也是化學突觸的特點。高等動物中樞突觸被分為GrayⅠ型和Ⅱ型,或簡稱Ⅰ型和Ⅱ型。前者的突觸間隙寬約30奈米,後膜明顯增厚,面積大;多見於軸突-樹突突觸;後者的突觸間隙寬約20奈米,後膜只輕度增厚,面積小,多見於軸突-胞體突觸。當然也存在介於兩者之間的移行型。

電突觸沒有突觸泡和線粒體的匯聚,它的兩個突觸膜曾一度被錯誤地認為是融合起來的,實際上兩者之間有 2奈米的突觸間隙;因此電突觸又稱間隙接頭。電突觸的兩側突觸膜都無明顯的增厚現象,膜內側胞漿中也無突觸泡的匯聚,但存在一些把兩側突觸膜連線起來的、直徑約2奈米的中空小橋,兩側神經元的胞漿(除大分子外)藉以相通。如將化子量不大的熒光色素注入一側胞漿中,往往可能過小橋孔擴散到另一神經元。這樣的兩個神經元,稱色素耦聯神經元。

化學突觸的傳遞

衝動傳到突觸前末梢,觸發前膜中的Ca2+通道開放,一定量的Ca2+順濃度差流入突觸扣。在Ca2+ 的作用下一定數量的突觸泡與突觸前膜融合後開口,將內含的遞質外排到突觸間隙。此過程稱胞吐。被釋放的遞質,擴散通過突觸間隙,到達突觸後膜,與位於後膜中的受體結合,形成遞質受體複合體,觸發受體改變構型,開放通道,使某些特定離子得以沿各自濃度梯度流入或流出。這種離子流所攜帶的淨電流,或使突觸後膜出現去極化變化,稱興奮性突觸後電位(EPSP),或使突觸後膜出現超極化變化,稱抑制性突觸後電位(IPSP)。至今尚未發現興奮性突觸與抑制性突觸在精細結構上的特徵性區別,有人報道含圓形突觸泡者為興奮性突觸,含橢圓形突觸泡者為抑制性突觸,但尚未得到進一步證實。

由細胞內記錄的EPSP和IPSP都是迅速上升、緩慢下降、持續約30毫秒的區域性電變化,只是在正常膜電位條件下前者為正,後者為負,以及IPSP的時程稍短些。

高等動物中樞每一突觸後神經元上通常形成大量的突觸(包括興奮性和抑制性的),貓脊髓前角的一個運動神經元胞體上形成1200~1800個突觸,約佔據神經元胞體表面的38%。神經元通過對EPSP和IPSP進行空間總和(即對在神經元不同位置上出現的EPSP和IPSP進行總和)和時間總和(即對每個突觸重複發生的突觸後電位進行總和),以決定它產生興奮還是抑制。總和後,如興奮性突觸後電位達到閾值,便觸發動作電位。在突觸傳遞中遞質一旦釋放,無論是否已與受體結合,便又迅速地被分解或被重吸收到突觸扣內或擴散離開突觸間隙,使突觸得以為下次傳遞作好準備。

電突觸的傳遞

發現較多的一類電突觸是雙向傳遞的,即不分突觸前或突觸後,對任何一方傳來的訊號都能傳遞。電突觸只起電阻的作用,而且電阻率低。這類突觸是靠電緊張電位傳遞的,所以稱電緊張突觸。如螯蝦腹神經索外側巨纖維中存在的間隔便是突觸。事實上,外側巨纖維是由屬於多個神經元的軸突串聯形成的,間隔存在於它們的交界處,由分屬兩個神經元的軸突膜構成。在實驗中向間隔的任一側通正向或負向電流(不超過閾值),都可在另一側記錄到相應的電緊張電位。電子顯微鏡觀察表明,這種由間隔突觸連線起來的巨軸突也存在於其他甲殼類動物以及環節動物的神經索中。可興奮細胞間的雙向電突觸,也主要見於無脊椎動物,如龍蝦心臟神經節起搏細胞,水蛭的兩個鉅細胞之間等,但脊椎動物大腦內,心肌和平滑肌細胞間也存在這種突觸。這類傳遞沒有方向性,也有人不承認它們是真正的突觸。後來陸續發現了單向傳遞的電突觸,既有興奮性的,也有抑制性的,從而證實了電突觸的存在。如螯蝦腹神經索中,外側巨纖維與運動巨纖維間形成的巨突觸就只允許興奮以電緊張的形式從突觸前傳到突觸後,這是有整流作用的突觸。這類突觸也見於海兔和水蛭的神經系統中。某些魚腦幹中的毛特納氏細胞軸丘上也發現了抑制性電突觸。

化學突觸與電突觸的功能特點

衝動在神經纖維上的傳導速度比較恆定,但在通過化學突觸時均呈現一定的時間延擱──突觸延擱。突觸延擱指從興奮傳導到突觸前末梢到突觸後電位出現的時間間隔。哺乳動物中樞突觸的突觸延擱約0.2~0.3毫秒,青蛙神經節內的長達2~3毫秒;經電突觸的興奮傳遞不顯現突觸延擱。化學突觸傳遞因受遞質代謝的限制易出現疲勞;電突觸的傳遞則和纖維傳導一樣是不疲勞的。化學傳遞易受環境因素如血流、代謝以及能影響遞質合成、分解、釋放和受體功能的藥物等的抑制和促進;電突觸的傳遞則不易受這些因素的影響,不過近年來也發現了一些調製電突觸的因素。那些需要快速並同步活動的神經元之間多為電突觸。如支配蝦弓身逃避反射的快速定型化活動便是主要藉助電突觸實現的;至於那些細緻的協調活動,特別是那些前面活動需要給後來的活動留下影響的情況,如學習、記憶等,則應是由化學突觸實現的。

參考書目

J.C.Eccles,The Physiology of Synapses,Springerverlag, Berlin, 1964.

參考文章

面神經損傷後對側大腦皮層運動區突觸重組有何意義神經與精神科