關於簡單易懂的數學手抄報圖片

  通過製作手抄報的方式也能讓我們加深對數學的認知,學習到更多的數學知識,下面由小編與大家分享關於簡單易懂的數學手抄報,希望對你有用!

  關於簡單易懂的數學手抄報欣賞

  關於簡單易懂的數學手抄報內容一

  高等數學

  高等數學是考研數學的重中之重,所佔的比重較大,在數學一、三中佔56%,數學二中佔78%,重點難點較多。具體說來,大家需要重點掌握的知識點有幾以下幾點:

  1.函式、極限與連續:主要考查極限的計算或已知極限確定原式中的常數;討論函式連續性和判斷間斷點型別;無窮小階的比較;討論連續函式在給定區間上零點的個數或確定方程在給定區間上有無實根。

  2.一元函式微分學:主要考查導數與微分的定義;各種函式導數與微分的計算;利用洛比達法則求不定式極限;函式極值;方程的的個數;證明函式不等式;與中值定理相關的證明;最大值、最小值在物理、經濟等方面實際應用;用導數研究函式性態和描繪函式圖形;求曲線漸近線。

  3.一元函式積分學:主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導、極限等;積分中值定理和積分性質的證明;定積分的應用,如計算旋轉面面積、旋轉體體積、變力作功等。

  4.多元函式微分學:主要考查偏導數存在、可微、連續的判斷;多元函式和隱函式的一階、二階偏導數;多元函式極值或條件極值在與經濟上的應用;二元連續函式在有界平面區域上的最大值和最小值。此外,數學一還要求會計算方向導數、梯度、曲線的切線與法平面、曲面的切平面與法線。

  5.多元函式的積分學:包括二重積分在各種座標下的計算,累次積分交換次序。數一還要求掌握三重積分,曲線積分和曲面積分以及相關的重要公式。

  6.微分方程及差分方程:主要考查一階微分方程的通解或特解;二階線性常係數齊次和非齊次方程的特解或通解;微分方程的建立與求解。差分方程的基本概念與一介常係數線形方程求解方法

  由於微積分的知識是一個完整的體系,考試的題目往往帶有很強的綜合性,跨章節的題目很多,需要考生對整個學科有一個完整而系統的把握。

  關於簡單易懂的數學手抄報內容二

  矩形與正方形

  ① 有一個內角是直角的平行四邊形叫做矩形。

  ② 矩形的對角線相等,四個角都是直角。

  ③ 對角線相等的平行四邊形是矩形。

  ④ 正方形具有平行四邊形,矩形,菱形的一切性質。

  ⑤一組鄰邊相等的矩形是正方形。