高一數學必修三教案

高一數學必修三教案

  作為一名無私奉獻的老師,就不得不需要編寫教案,教案是教學藍圖,可以有效提高教學效率。那麼什麼樣的教案才是好的呢?下面是小編精心整理的高一數學必修三教案,供大家參考借鑑,希望可以幫助到有需要的朋友。

高一數學必修三教案1

  教學目標

  1.使學生了解奇偶性的概念,回會利用定義判定簡單函式的奇偶性。

  2.在奇偶性概念形成過程中,培養學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法。

  3.在學生感受數學美的同時,激發學習的愛好,培養學生樂於求索的精神。

  教學重點,難點

  重點是奇偶性概念的形成與函式奇偶性的判定

  難點是對概念的熟悉

  教學用具

  投影儀,計算機

  教學方法

  引導發現法

  教學過程

  一.引入新課

  前面我們已經研究了函式的單調性,它是反映函式在某一個區間上函式值隨自變數變化而變化的性質,今天我們繼續研究函式的另一個性質。從什麼角度呢?將從對稱的角度來研究函式的性質。

  對稱我們大家都很熟悉,在生活中有很多對稱,在數學中也能發現很多對稱的問題,大家回憶一下在我們所學的內容中,非凡是函式中有沒有對稱問題呢?

  (學生可能會舉出一些數值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函式具體化,如和等。)

  結合圖象提出這些對稱是我們在初中研究的關於軸對稱和關於原點對稱問題,而我們還曾研究過關於軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函式圖象關於軸對稱的嗎?

  學生經過思考,能找出原因,由於函式是對映,一個只能對一個,而不能有兩個不同的,故函式的圖象不可能關於軸對稱。最終提出我們今天將重點研究圖象關於軸對稱和關於原點對稱的問題,從形的特徵中找出它們在數值上的規律。

  二.講解新課

  2.函式的奇偶性(板書)

  教師從剛才的圖象中選出,用計算機打出,指出這是關於軸對稱的圖象,然後問學生初中是怎樣判定圖象關於軸對稱呢?(由學生回答,是利用圖象的翻折後重合來判定)此時教師明確提出研究方向:今天我們將從數值角度研究圖象的這種特徵體現在自變數與函式值之間有何規律?

  學生開始可能只會用語言去描述:自變數互為相反數,函式值相等。教師可引導學生先把它們具體化,再用數學符號表示。(藉助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域記憶體在,使與不等呢?(可用課件幫助演示讓動起來觀察,發現結論,這樣的是不存在的)從這個結論中就可以發現對定義域內任意一個,都有成立。最後讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整。

  (1)偶函式的定義:假如對於函式的定義域內任意一個,都有,那麼就叫做偶函式。(板書)

  (給出定義後可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)

  提出新問題:函式圖象關於原點對稱,它的自變數與函式值之間的數值規律是什麼呢?(同時打出或的圖象讓學生觀察研究)

  學生可類比剛才的方法,很快得出結論,再讓學生給出奇函式的定義。

  (2)奇函式的定義:假如對於函式的定義域內任意一個,都有,那麼就叫做奇函式。(板書)

  (由於在定義形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

  例1。判定下列函式的奇偶性(板書)

  (1);(2);

  (3);;

  (5);(6)。

  (要求學生口答,選出12個題說過程)

  解:(1)是奇函式。(2)是偶函式。

  (3),是偶函式。

  前三個題做完,教師做一次小結,判定奇偶性,只需驗證與之間的關係,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函式的問題呢?

  學生經過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函式。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)

  從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經受任意性的考驗,當時,由於,故不存在,更談不上與相等了,由於任意性被破壞,所以它不能是奇偶性。

  教師由此引導學生,透過剛才這個題目,你發現在判定中需要注重些什麼?(若學生髮現不了定義域的特徵,教師可再從定義啟發,在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發現定義域應關於原點對稱,再提出定義域關於原點對稱是函式具有奇偶性的什麼條件?

  可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論。

  (3)定義域關於原點對稱是函式具有奇偶性的必要但不充分條件。(板書)

  由學生小結判定奇偶性的步驟之後,教師再提出新的問題:在剛才的幾個函式中有是奇函式不是偶函式,有是偶函式不是奇函式,也有既不是奇函式也不是偶函式,那麼有沒有這樣的函式,它既是奇函式也是偶函式呢?若有,舉例說明。

  經學生思考,可找到函式。然後繼續提問:是不是具備這樣性質的函式的解析式都只能寫成這樣呢?能證實嗎?

  例2。已知函式既是奇函式也是偶函式,求證:。(板書)(試由學生來完成)

  證實:既是奇函式也是偶函式,=,且,= ,即證後,教師請學生記住結論的同時,追問這樣的函式應有多少個呢?學生開始可能認為只有一個,經教師提示可發現,只是解析式的特徵,若改變函式的定義域,如,,,,它們顯然是不同的函式,但它們都是既是奇函式也是偶函式。由上可知函式按其是否具有奇偶性可分為四類

  (4)函式按其是否具有奇偶性可分為四類:(板書)

  例3。判定下列函式的奇偶性(板書)

  (1);(2);(3)。

  由學生回答,不完整之處教師補充。

  解:(1)當時,為奇函式,當時,既不是奇函式也不是偶函式。

  (2)當時,既是奇函式也是偶函式,當時,是偶函式。

  (3)當時,於是,

  當時,,於是=,

  綜上是奇函式。

  教師小結(1)(2)注重分類討論的使用,(3)是分段函式,當檢驗,並不能說明具備奇偶性,因為奇偶性是對函式整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可。

  三. 小結

  1.奇偶性的概念

  2.判定中注重的問題

  四.作業略

  五.板書設計

  2.函式的奇偶性例1.例3.

  (1)偶函式定義

  (2)奇函式定義

  (3)定義域關於原點對稱是函式例2。 小結

  具備奇偶性的必要條件

  (4)函式按奇偶性分類分四類

  探究活動

  (1)定義域為的任意函式都可以表示成一個奇函式和一個偶函式的和,你能試證實之嗎?

  (2)判定函式在上的單調性,並加以證實。

  在此基礎上試利用這個函式的`單調性解決下面的問題:

高一數學必修三教案2

  教學目標

  1。瞭解函式的單調性和奇偶性的概念,把握有關證實和判定的基本方法。

  (1)瞭解並區分增函式,減函式,單調性,單調區間,奇函式,偶函式等概念。

  (2)能從數和形兩個角度熟悉單調性和奇偶性。

  (3)能借助圖象判定一些函式的單調性,能利用定義證實某些函式的單調性;能用定義判定某些函式的奇偶性,並能利用奇偶性簡化一些函式圖象的繪製過程。

  2。透過函式單調性的證實,提高學生在代數方面的推理論證能力;透過函式奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。

  3。透過對函式單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂於求索的精神,形成科學,嚴謹的研究態度。

  教學建議

  一、知識結構

  (1)函式單調性的概念。包括增函式、減函式的定義,單調區間的概念函式的單調性的判定方法,函式單調性與函式影象的關係。

  (2)函式奇偶性的概念。包括奇函式、偶函式的定義,函式奇偶性的判定方法,奇函式、偶函式的影象。

  二、重點難點分析

  (1)本節教學的重點是函式的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函式單調性,奇偶性的本質,把握單調性的證實。

  (2)函式的單調性這一性質學生在初中所學函式中曾經瞭解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函式內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什麼是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。

  三、教法建議

  (1)函式單調性概念引入時,可以先從學生熟悉的一次函式,,二次函式。反比例函式圖象出發,回憶圖象的增減性,從這點感性熟悉出發,透過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎麼就升上去了?可以從點的座標的角度,也可以從自變數與函式值的關係的角度來解釋,引導學生髮現自變數與函式值的的變化規律,再把這種規律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。

  (2)函式單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什麼程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律。

  函式的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變數互為相反數,觀察對應的函式值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表示式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恆等式。關於定義域關於原點對稱的問題,也可藉助課件將函式圖象進行多次改動,幫助學生髮現定義域的對稱性,同時還可以藉助圖象(如)說明定義域關於原點對稱只是函式具備奇偶性的必要條件而不是充分條件。

高一數學必修三教案3

  教學目標:

  1、知識目標:使學生理解指數函式的定義,初步掌握指數函式的影象和性質。

  2、能力目標:透過定義的引入,影象特徵的觀察、發現過程使學生懂得理論與實踐的辯證關係,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。

  3、情感目標:透過學生的參與過程,培養他們手腦並用、多思勤練的良好學習習慣和勇於探索、鍥而不捨的治學精神。

  教學重點、難點:

  1、重點:指數函式的影象和性質

  2、難點:底數a的變化對函式性質的影響,突破難點的關鍵是利用多媒體動感顯示,透過顏色的區別,加深其感性認識。

  教學方法:

  引導——發現教學法、比較法、討論法

  教學過程:

  一、事例引入

  T:上節課我們學習了指數的運算性質,今天我們來學習與指數有關的函式。什麼是函式?

  S:————————

  T:主要是體現兩個變數的關係。我們來考慮一個與醫學有關的例子:大家對“非典”應該並不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間裡病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:

  C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,——————。一個這樣的球菌分裂x次後,得到的球菌的個數y與x的函式關係式是:y =2 x)

  S,T:(討論)這是球菌個數y關於分裂次數x的函式,該函式是什麼樣的形式(指數形式),

  從函式特徵分析:底數2是一個不等於1的正數,是常量,而指數x卻是變數,我們稱這種函式為指數函式——點題。

  二、指數函式的定義

  C:定義:函式y = a x(a>0且a≠1)叫做指數函式,x∈R。。

  問題1:為何要規定a > 0且a ≠1?

  S:(討論)

  C:(1)當a<0時,a x有時會沒有意義,如a=﹣3時,當x=

  就沒有意義;

  (2)當a=0時,a x有時會沒有意義,如x= — 2時,

  (3)當a = 1時,函式值y恆等於1,沒有研究的必要。

  鞏固練習1:

  下列函式哪一項是指數函式()

  A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x

最近訪問