襪子

[拼音]:zantai fupinyu fenxi

[英文]:complex-frequency domain analysis of transient state

用拉普拉斯變換方法分析線性電路和系統的暫態。拉普拉斯變換常用以求線性常係數微分方程和偏微分方程的解。線性時不變集總引數電路和系統是用常係數線性微分方程描述的;線性時不變分佈引數電路是由相應的偏微分方程描述的。它們中的暫態都可以用拉普拉斯變換方法求解。所以拉普拉斯變換在分析電工技術的問題中得到了廣泛的應用,並且已成為分析線性電路和系統的一個常用的分析工具。

拉普拉斯變換

設時間t的函式f(t),且f(t)=0,它的拉普拉斯變換F(s)是

(1)

式中s=σ+jω,σ、ω為實數,j=

,s即稱為複頻率。σ>σ0,σ0是能使式(1)收斂的最小的σ值,稱為收斂橫座標。F(s)又稱為f(t)的象函式,f(t)則稱為F(s)的原函式。只要f(t)滿足一些很寬的條件, 式(1)的積分收斂,f(t)的拉普拉斯變換便存在。給定一原函式f(t),可由式(1)求其象函式。反之,由一象函式F(s)亦可求出其原函式f(t)

(2)

上式稱為拉普拉斯反變換。計算式 (2)的積分常取複平面 s上由σ0-j∞到σ0+jω的直線作為積分路徑。在此路徑右側,即Res>σ0,F(s)是s的正則函式。

根據(1)、(2)兩式,可以求出各個不同的f(t)與相應的F(s)。將許多這樣的f(t)、F(s)記成一份表,便可以象利用積分表那樣利用它。表中列出了一份簡短的拉普拉斯轉換表,其中有一些最常用的函式及其拉普拉斯變換式。

拉普拉斯變換在電路分析中的應用

線性集總引數時不變電路中的電流、電壓的求解問題,都可歸結為給定電路的由基爾霍夫定律決定的一組微分積分方程的求解問題。這些方程具有以下兩種形式。

(1)對任一節點在任一瞬間流出此節點的各電流的代數和為零(KCL),即

∑i(t)=0

(2)對任一閉合迴路在任一瞬間沿一回路方向的各電壓的代數和為零(KVL),即

∑u(t)=0

在對電路問題求解時還需要表示電路元件特性的方程,例如對電阻、電感、電容,電壓、電流有以下關係

等等。

應用拉普拉斯變換,將以上諸方程中的各變數變換成相應的拉普拉斯變換式,便有

對於KCL:

∑I(s)=0

對於KVL:

∑U(s)=0

對於元件方程:

ur(s)=RI(s)

uL(s)=SLI(s)-Li(0-)

ir(s)=Gur(s)

iC(s)=SCuC(s)-CuC(0)

等等。由上面的方程可以作出相應的變換後的等效電路圖)。

對所欲分析的電路,將激勵(電壓源、電流源)以及所有變數變換成相應的拉普拉斯變換式後,得到一組未知量的象函式所應滿足的代數方程組,解這樣的方程就可求得所需的未知量的象函式。這樣求得的象函式常具有有理函式,即兩個s的多項式的比的形式,

利用部分分式法,假設分母多項式的零點相異,即D(s)=0時無重根(m>n),可將F(s)寫成m個簡單分式之和

式中諸係數為

,立即可得F(s)的原函式

在D(s)=0有重根的情況下,也可以得到相應的求原函式的公式。為簡單計,設D(s)=0有一個P 重根,D(s)=(s-s1)pD1(s),D1(s1)≠0,F(s)可寫作

F(s)的部分分式可寫作以下形式

式中的各系數Ai(i=1,2,…,P)可由下式求得

再用

,即可求得F(s)的原函式。