比較簡短的霸氣的勵志人生格言
[拼音]:shuxue moxing
[英文]:mathematical models
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、影象、框圖、數理邏輯等來描述系統的特徵及其內部聯絡或與外界聯絡的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型
靜態模型是指要描述的系統各量之間的關係是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表示式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函式也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
分佈引數和集中引數模型
分佈引數模型是用各類偏微分方程描述系統的動態特性,而集中引數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分佈引數模型藉助於空間離散化的方法,可簡化為複雜程度較低的集中引數模型。
連續時間和離散時間模型
模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中引數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型
隨機性模型中變數之間關係是以統計值或概率分佈的形式給出的,而在確定性模型中變數間的關係是確定的。
引數與非引數模型
用代數方程、微分方程、微分方程組以及傳遞函式等描述的模型都是引數模型。建立引數模型就在於確定已知模型結構中的各個引數。通過理論分析總是得出引數模型。非引數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈衝響應或階躍響應就是非引數模型。運用各種系統辨識的方法,可由非引數模型得到引數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到引數模型。
線性和非線性模型
線性模型中各量之間的關係是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關係不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。