高三數學知識點總結大全

高三數學知識點總結大全

  總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以提升我們發現問題的能力,是時候寫一份總結了。那麼你知道總結如何寫嗎?下面是小編整理的高三數學知識點總結,希望能夠幫助到大家。

  高三數學知識點總結1

  高考數學必考知識點歸納必修一:

  1、集合與函式的概念(這部分知識抽象,較難理解)2、基本的初等函式(指數函式、對數函式)3、函式的性質及應用(比較抽象,較難理解)

  高考數學必考知識點歸納必修二:

  1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和麵面角。

  這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考佔22---27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題

  3、圓方程

  高考數學必考知識點歸納必修三:

  1、演算法初步:高考必考內容,5分(選擇或填空)2、統計:3、機率:高考必考內容,09年理科佔到15分,文科數學佔到5分。

  高考數學必考知識點歸納必修四:

  1、三角函式:(影象、性質、高中重難點,)必考大題:15---20分,並且經常和其他函式混合起來考查。

  2、平面向量:高考不單獨命題,易和三角函式、圓錐曲線結合命題。09年理科佔到5分,文科佔到13分。

  高考數學必考知識點歸納必修五:

  1、解三角形:(正、餘弦定理、三角恆等變換)高考中理科佔到22分左右,文科數學佔到13分左右2、數列:高考必考,17---22分3、不等式:(線性規劃,聽課時易理解,但做題較複雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函式結合求最值、解集。

  高考數學必考知識點歸納文科選修:

  選修1--1:重點:高考佔30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數、導數的應用(高考必考)

  選修1--2:

  1、統計:2、推理證明:一般不考,若考會是填空題3、複數:(新課標比老課本難的多,高考必考內容)。

  高考數學必考知識點歸納理科選修:

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導數與微積分2、推理證明:一般不考3、複數

  選修2--3:1、計數原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規律,無技巧。高考必考,10分2、隨機變數及其分佈:不單獨命題3、統計:

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函式:高考60分:①、指數函式②對數函式③二次函式④三次函式⑤三角函式⑥抽象函式(無函式表示式,不易理解,難點)

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規則)5分必考

  數列:17分(一道大題+一道選擇或填空)易和函式結合命題

  平面解析幾何:(30分左右)

  計算原理:10分左右

  機率統計:12分----17分

  複數:5分

  高三數學知識點總結2

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現,屬容易題。重點考查集合間關係的理解和認識。近年的試題加強了對集合計算化簡能力的考查,並向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,並注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關係、邏輯聯結詞、“充要關係”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。

  考點二:函式與導數

  函式是高考的重點內容,以選擇題和填空題的為載體針對性考查函式的定義域與值域、函式的性質、函式與方程、基本初等函式(一次和二次函式、指數、對數、冪函式)的應用等,分值約為10分,解答題與導數交匯在一起考查函式的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函式的單調區間、極值與最值等,通常以客觀題的形式出現,屬於容易題和中檔題,三是導數的綜合應用,主要是和函式、不等式、方程等聯絡在一起以解答題的形式出現,如一些不等式恆成立問題、引數的取值範圍問題、方程根的個數問題、不等式的證明等問題。

  考點三:三角函式與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、餘弦定理的應用,可能就是一道和解答題相互補充的三角函式的影象、性質或三角恆等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函式等結合,解決角度、垂直、共線等問題是“新熱點”題型、

  考點四:數列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設定1到2道題。對不等式的工具性穿插在數列、解析幾何、函式導數等解答題中進行考查、在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函式、方程、不等式等解決問題的能力,它們都屬於中、高檔題目、

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結構特徵、直觀圖與三檢視;二是考查空間點、線、面之間的位置關係;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  考點六:解析幾何

  一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關係、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關係問題,經常與平面向量、函式與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與範圍問題等。

  考點七:演算法複數推理與證明

  高考對演算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”、考查的熱點是流程圖的識別與演算法語言的閱讀理解、演算法與數列知識的網路交匯命題是考查的主流、複數考查的重點是複數的有關概念、複數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函式、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對於理科,數學歸納法可能作為解答題的一小問、

  高三數學知識點總結3

  1、圓柱體:

  表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:

  表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、正方體

  a-邊長,S=6a2,V=a3

  4、長方體

  a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、稜柱

  S-底面積h-高V=Sh

  6、稜錐

  S-底面積h-高V=Sh/3

  7、稜臺

  S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、擬柱體

  S1-上底面積,S2-下底面積,S0-中截面積

  h-高,V=h(S1+S2+4S0)/6

  9、圓柱

  r-底半徑,h-高,C—底面周長

  S底—底面積,S側—側面積,S表—表面積C=2πr

  S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱

  R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、直圓錐

  r-底半徑h-高V=πr^2h/3

  12、圓臺

  r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

  13、球

  r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  高三數學知識點總結4

  等式的性質:

  ①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。

  不等式基本性質有:

  (1)a>bb

  (2)a>b,b>ca>c(傳遞性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0時,a>bac>bc

  c<0時,a>bac

  運算性質有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  應注意,上述性質中,條件與結論的邏輯關係有兩種:“”和“”即推出關係和等價關係。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。

  ②關於不等式的性質的考察,主要有以下三類問題:

  (1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。

  (2)利用不等式的性質及實數的性質,函式性質,判斷實數值的大小。

  (3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關係。

  高中數學集合複習知識點

  任一A,B,記做AB

  AB,BA,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

  (3)集合的運算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質

  n元集合的字集數:2n

  真子集數:2n-1;

  非空真子集數:2n-2

  高中數學集合知識點歸納

  1、集合的概念

  集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的物件集合在一起就稱為一個集合。組成集合的物件叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的物件的全體組成的一個集合。

  2、元素與集合的關係元素與集合的關係有屬於和不屬於兩種:

  元素a屬於集合A,記做a∈A;元素a不屬於集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設A是一個給定的集合,_是某一具體物件,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說“對於一個給定的集合,它的任何兩個元素都是不同的”。

  (3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。

  4、集合的分類

  集合科根據他含有的元素個數的多少分為兩類:

  有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數是可數的,因此兩個集合是有限集。

  無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等於所有點”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規定常見的數集用特定的字母表示,下面是幾種常見的數集表示方法,請牢記。

  (1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記做N。

  (2)非負整數集內排出0的集合,也稱正整數集,記做N_或N+。

  (3)全體整數的集合通常簡稱為整數集Z。

  (4)全體有理數的集合通常簡稱為有理數集,記做Q。

  (5)全體實數的集合通常簡稱為實數集,記做R。

  高三數學知識點總結5

  1、三類角的求法:

  ①找出或作出有關的角。

  ②證明其符合定義,並指出所求作的角。

  ③計算大小(解直角三角形,或用餘弦定理)。

  2、正稜柱——底面為正多邊形的直稜柱

  正稜錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正稜錐的計算集中在四個直角三角形中:

  3、怎樣判斷直線l與圓C的位置關係?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  4、對線性規劃問題:

  作出可行域,作出以目標函式為截距的直線,在可行域內平移直線,求出目標函式的最值。

  培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?

  (1)欣賞數學的美感

  比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……

  透過對旋轉變換及其不變數的討論,我們可以證明反比例函式、“對勾函式”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。

  (2)注意到數學在實際生活中的應用。

  例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解、學好數學,是現代公民的基本素養之一啊

  (3)採用靈活的教學手段,與時俱進。

  利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。

  (4)適當看一些科普類的書籍和文章。

  比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。

  高三數學知識點總結6

  1、函式的奇偶性

  (1)若f(x)是偶函式,那麼f(x)=f(-x);

  (2)若f(x)是奇函式,0在其定義域內,則f(0)=0(可用於求引數);

  (3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;

  (5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;

  2、複合函式的有關問題

  (1)複合函式定義域求法:若已知的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。

  (2)複合函式的'單調性由“同增異減”判定;

  3、函式影象(或方程曲線的對稱性)

  (1)證明函式影象的對稱性,即證明影象上任意點關於對稱中心(對稱軸)的對稱點仍在影象上;

  (2)證明影象C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函式y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)影象關於直線x=a對稱;

  (6)函式y=f(x-a)與y=f(b-x)的影象關於直線x=對稱;

  4、函式的週期性

  (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是週期為2a的週期函式;

  (2)若y=f(x)是偶函式,其影象又關於直線x=a對稱,則f(x)是週期為2︱a︱的週期函式;

  (3)若y=f(x)奇函式,其影象又關於直線x=a對稱,則f(x)是週期為4︱a︱的週期函式;

  (4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是週期為2的週期函式;

  (5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函式y=f(x)是週期為2的週期函式;

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是週期為2的週期函式;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

  7、(1)(a>0a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8、判斷對應是否為對映時,抓住兩點:

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函式的單調性,求反函式,判斷函式的奇偶性。

  10、對於反函式,應掌握以下一些結論:

  (1)定義域上的單調函式必有反函式;

  (2)奇函式的反函式也是奇函式;

  (3)定義域為非單元素集的偶函式不存在反函式;

  (4)週期函式不存在反函式;

  (5)互為反函式的兩個函式具有相同的單調性;

  (6)y=f(x)與y=f-1(x)互為反函式,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11、處理二次函式的問題勿忘數形結合

  二次函式在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;

  12、依據單調性

  利用一次函式在區間上的保號性可解決求一類引數的範圍問題;

  13、恆成立問題的處理方法

  (1)分離引數法;

  (2)轉化為一元二次方程的根的分佈列不等式(組)求解;

  a(1)=a,a(n)為公差為r的等差數列

  通項公式:

  a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

  可用歸納法證明。

  n=1時,a(1)=a+(1-1)r=a。成立。

  假設n=k時,等差數列的通項公式成立。a(k)=a+(k-1)r

  則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

  通項公式也成立。

  因此,由歸納法知,等差數列的通項公式是正確的。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+(a+r)+、、、+[a+(n-1)r]

  =na+r[1+2+、、、+(n-1)]

  =na+n(n-1)r/2

  同樣,可用歸納法證明求和公式。

  a(1)=a,a(n)為公比為r(r不等於0)的等比數列

  通項公式:

  a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

  可用歸納法證明等比數列的通項公式。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+ar+、、、+ar^(n-1)

  =a[1+r+、、、+r^(n-1)]

  r不等於1時,

  S(n)=a[1-r^n]/[1-r]

  r=1時,

  S(n)=na、

  同樣,可用歸納法證明求和公式。

  高三數學知識點總結7

  三角函式。

  注意歸一公式、誘導公式的正確性。

  數列題。

  1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

  2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

  3、證明不等式時,有時建構函式,利用函式單調性很簡單

  立體幾何題。

  1、證明線面位置關係,一般不需要去建系,更簡單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

  3、注意向量所成的角的餘弦值(範圍)與所求角的餘弦值(範圍)的關係。

  機率問題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

  2、搞清是什麼機率模型,套用哪個公式;

  3、記準均值、方差、標準差公式;

  4、求機率時,正難則反(根據p1+p2+……+pn=1);

  5、注意計數時利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、餘弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、餘弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用餘弦定理

  3、餘弦定理對於確定三角形形狀非常有用,只需要知道角的餘弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

  高三數學知識點總結8

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

  (3)集合的運算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質

  n元集合的字集數:2n

  真子集數:2n-1;

  非空真子集數:2n-2

  高三數學知識點2

  兩個複數相等的定義:

  如果兩個複數的實部和虛部分別相等,那麼我們就說這兩個複數相等,即:如果a,b,c,d∈R,那麼a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時,a+bi=0

  a=0,b=0.

  複數相等的充要條件,提供了將複數問題化歸為實數問題解決的途徑。

  複數相等特別提醒:

  一般地,兩個複數只能說相等或不相等,而不能比較大小。如果兩個複數都是實數,就可以比較大小,也只有當兩個複數全是實數時才能比較大小。

  解複數相等問題的方法步驟:

  (1)把給的複數化成複數的標準形式;

  (2)根據複數相等的充要條件解之。

  高三數學知識點總結9

  不等式的解集:

  ①能使不等式成立的未知數的值,叫做不等式的解。

  ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

  不等式的判定:

  ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大於,小於,小於等於,大於等於,不等於”,其中“≤”又叫作不大於,“≥”叫作不小於;

  ②在不等式“a>b”或“a

  ③不等號的開口所對的數較大,不等號的尖頭所對的數較小;

  ④在列不等式時,一定要注意不等式關係的關鍵字,如:正數、非負數、不大於、小於等等。

  任一x?A,x?B,記做AB

  AB,BAA=B

  AB={x|x?A,且x?B}

  AB={x|x?A,或x?B}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

  (3)集合的運算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質

  n元集合的字集數:2n

  真子集數:2n-1;

  非空真子集數:2n-2

  高三數學知識點總結10

  1.數列的定義、分類與通項公式

  (1)數列的定義:

  ①數列:按照一定順序排列的一列數.

  ②數列的項:數列中的每一個數.

  (2)數列的分類:

  分類標準型別滿足條件

  項數有窮數列項數有限

  無窮數列項數無限

  項與項間的大小關係遞增數列an+1>an其中n∈N_

  遞減數列an+1

  常數列an+1=an

  (3)數列的通項公式:

  如果數列{an}的第n項與序號n之間的關係可以用一個式子來表示,那麼這個公式叫做這個數列的通項公式.

  2.數列的遞推公式

  如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關係可用一個公式來表示,那麼這個公式叫數列的遞推公式.

  3.對數列概念的理解

  (1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別於集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那麼它們就是不同的兩個數列.

  (2)數列中的數可以重複出現,而集合中的元素不能重複出現,這也是數列與數集的區別.

  4.數列的函式特徵

  數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函式,數列的通項公式也就是相應的函式解析式,即f(n)=an(n∈N_).

  高三數學知識點總結11

  1.不等式的定義

  在客觀世界中,量與量之間的不等關係是普遍存在的,我們用數學符號連線兩個數或代數式以表示它們之間的不等關係,含有這些不等號的式子,叫做不等式.

  2.比較兩個實數的大小

  兩個實數的大小是用實數的運算性質來定義的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,則有>1?;=1?;<1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質

  (1)對稱性:a>b?;

  (2)傳遞性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可開方:a>b>0?(n∈N,n≥2).

  複習指導

  1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

  2.“一種方法”待定係數法:求代數式的範圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出引數,最後利用不等式的性質求出目標式的範圍.

  3.“兩條常用性質”

  (1)倒數性質:①a>b,ab>0?<;②a<0

  ③a>b>0,0;④0

  (2)若a>b>0,m>0,則

  ①真分數的性質:<;>(b-m>0);

  ②假分數的性質:>;<(b-m>0).

  高三數學知識點總結12

  付正軍:高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節,主要是考函式和導數,這是我們整個高中階段裡最核心的板塊,在這個板塊裡,重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分佈問題,但是這個分佈重點還包含兩個分析就是二次方程的分佈的問題,這是第一個板塊。

  第二個是平面向量和三角函式。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函式的影象和性質,這裡重點掌握正弦函式和餘弦函式的性質,第三,正弦定理和餘弦定理來解三角形。難度比較小。

  第三,是數列,數列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四,空間向量和立體幾何。在裡面重點考察兩個方面:一個是證明;一個是計算。

  第五,機率和統計,這一板塊主要是屬於數學應用問題的範疇,當然應該掌握下面幾個方面,第一等可能的機率,第二事件,第三是獨立事件,還有獨立重複事件發生的機率。

  第六,解析幾何,這是我們比較頭疼的問題,是整個試卷裡難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關係,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這裡我相等的是,這道題儘管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章裡我們要掌握比較好的演算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七,押軸題,考生在備考複習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

  高三數學知識點總結13

  1.等差數列的定義

  如果一個數列從第2項起,每一項與它的前一項的差等於同一個常數,那麼這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那麼A叫做a與b的等差中項.

  4.等差數列的常用性質

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

  (4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數,則S偶-S奇=nd/2;

  若n為奇數,則S奇-S偶=a中(中間項).

  注意:

  一個推導

  利用倒序相加法推導等差數列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  兩個技巧

  已知三個或四個陣列成等差數列的一類問題,要善於設元.

  (1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其餘各項再依據等差數列的定義進行對稱設元.

  四種方法

  等差數列的判斷方法

  (1)定義法:對於n≥2的任意自然數,驗證an-an-1為同一常數;

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:後兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.

  高三數學知識點總結14

  ①正稜錐各側稜相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高)。

  ②正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側稜、側稜在底面內的射影也組成一個直角三角形。

  ⑶特殊稜錐的頂點在底面的射影位置:

  ①稜錐的側稜長均相等,則頂點在底面上的射影為底面多邊形的外心。

  ②稜錐的側稜與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。

  ③稜錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心。

  ④稜錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心。

  ⑤三稜錐有兩組對稜垂直,則頂點在底面的射影為三角形垂心。

  ⑥三稜錐的三條側稜兩兩垂直,則頂點在底面上的射影為三角形的垂心。

  ⑦每個四面體都有外接球,球心0是各條稜的中垂面的交點,此點到各頂點的距離等於球半徑;

  ⑧每個四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等於半徑。

  [注]:

  i、各個側面都是等腰三角形,且底面是正方形的稜錐是正四稜錐。(×)(各個側面的等腰三角形不知是否全等)

  ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。

  簡證:AB⊥CD,AC⊥BD

  BC⊥AD。令得,已知則。

  iii、空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形。

  iv、若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形。

  簡證:取AC中點,則平面90°易知EFGH為平行四邊形

  EFGH為長方形。若對角線等,則為正方形。

  高三數學知識點總結15

  必修一

  第一章:集合和函式的基本概念

  這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“並、補、交、非”也就解決了。

  還有函式的定義域和函式的單調性、增減性的概念,這些都是函式的基礎而且不難理解。在第一輪複習中一定要反覆去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。

  第二章:基本初等函式

  ——指數、對數、冪函式三大函式的運算性質及影象

  函式的幾大要素和相關考點基本都在函式影象上有所體現,單調性、增減性、極值、零點等等。關於這三大函式的運算公式,多記多用,多做一點練習,基本就沒問題。

  函式影象是這一章的重難點,而且影象問題是不能靠記憶的,必須要理解,要會熟練的畫出函式影象,定義域、值域、零點等等。對於冪函式還要搞清楚當指數冪大於一和小於一時影象的不同及函式值的大小關係,這也是常考點。另外指數函式和對數函式的對立關係及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

  第三章:函式的應用

  這一章主要考是函式與方程的結合,其實就是函式的零點,也就是函式影象與X軸的交點。這三者之間的轉化關係是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函式在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函式的零點的Δ判別法,這個需要你看懂定義,多畫多做題。

  必修二

  第一章:空間幾何

  三檢視和直觀圖的繪製不算難,但是從三檢視復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

  在做題時結合草圖是有必要的,不能單憑想象。後面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。

  第二章:點、直線、平面之間的位置關係

  這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規範性問題。

  關於這一章的內容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表示式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

  第三章:直線與方程

  這一章主要講斜率與直線的位置關係,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什麼難點。

  第四章:圓與方程

  能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。透過點到點的距離、點到直線的距離、圓半徑的大小關係來判斷點與圓、直線與圓、圓與圓的位置關係。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

  必修三

  總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。

  程式框圖與三種演算法語句的結合,及框圖的演算法表示,不要用常規的語言來理解,否則你會在這樣的題型中栽跟頭。

  秦九韶演算法是重點,要牢記演算法的公式。

  統計就是對一堆資料的處理,考試也是以計算為主,會從條形圖中計算出中位數等數字特徵,對於迴歸問題,只要記住公式,也就是個計算問題。

  機率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

  必修四

  第一章:三角函式

  考試必在這一塊出題,且題量不小!誘導公式和基本三角函式影象的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函式形函式的振幅、頻率、週期、相位、初相上,及根據最值計算A、B的值和週期,及恆等變化時的影象及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從影象和例題入手。

  第二章:平面向量

  向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點座標公式是重點內容,也是難點內容,要花心思記憶。

  第三章:三角恆等變換

  這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函式去記。

  必修五

  第一章:解三角形

  掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。

  第二章:數列

  等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

  第三章:不等式

  這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯絡的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。

  高三數學知識點總結16

  複數的概念:

  形如a+bi(a,b∈R)的數叫複數,其中i叫做虛數單位。全體複數所成的集合叫做複數集,用字母C表示。

  複數的表示:

  複數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做複數的代數形式,其中a叫複數的實部,b叫複數的虛部。

  複數的幾何意義:

  (1)複平面、實軸、虛軸:

  點Z的橫座標是a,縱座標是b,複數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角座標系來表示複數的平面叫做複平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數

  (2)複數的幾何意義:複數集C和複平面內所有的點所成的集合是一一對應關係,即

  這是因為,每一個複數有複平面內惟一的一個點和它對應;反過來,複平面內的每一個點,有惟一的一個複數和它對應。

  這就是複數的一種幾何意義,也就是複數的另一種表示方法,即幾何表示方法。

  複數的模:

  複數z=a+bi(a、b∈R)在複平面上對應的點Z(a,b)到原點的距離叫複數的模,記為|Z|,即|Z|=

  虛數單位i:

  (1)它的平方等於-1,即i2=-1;

  (2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

  (3)i與-1的關係:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

  (4)i的週期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  複數模的性質:

  複數與實數、虛數、純虛數及0的關係:

  對於複數a+bi(a、b∈R),當且僅當b=0時,複數a+bi(a、b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。

  高三數學知識點總結17

  任一x=A,x=B,記做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1、集合元素具有

  ①確定性;

  ②互異性;

  ③無序性

  2、集合表示方法

  ①列舉法;

  ②描述法;

  ③韋恩圖;

  ④數軸法

  (3)集合的運算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質

  n元集合的字集數:2n

  真子集數:2n—1;

  非空真子集數:2n—2

  高三數學知識點總結18

  第一部分集合

  (1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

  (2)注意:討論的時候不要遺忘了的情況。

  第二部分函式與導數

  1、對映:注意

  ①第一個集合中的元素必須有象;

  ②一對一,或多對一。

  2、函式值域的求法:

  ①分析法;

  ②配方法;

  ③判別式法;

  ④利用函式單調性;

  ⑤換元法;

  ⑥利用均值不等式;

  ⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);

  ⑧利用函式有界性;

  ⑨導數法

  3、複合函式的有關問題

  (1)複合函式定義域求法:

  ①若f(x)的定義域為〔a,b〕,則複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。

  (2)複合函式單調性的判定:

  ①首先將原函式分解為基本函式:內函式與外函式;

  ②分別研究內、外函式在各自定義域內的單調性;

  ③根據“同性則增,異性則減”來判斷原函式在其定義域內的單調性。

  注意:外函式的定義域是內函式的值域。

  4、分段函式:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

  5、函式的奇偶性

  (1)函式的定義域關於原點對稱是函式具有奇偶性的必要條件;

  (2)是奇函式;

  (3)是偶函式;

  (4)奇函式在原點有定義,則;

  (5)在關於原點對稱的單調區間內:奇函式有相同的單調性,偶函式有相反的單調性;

  (6)若所給函式的解析式較為複雜,應先等價變形,再判斷其奇偶性;

最近訪問