高三數學知識點彙總歸納
高三數學知識點彙總歸納
在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞資訊的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點彙總歸納,僅供參考,希望能夠幫助到大家。
高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。
2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫座標。即:
方程有實數根函式的圖象與軸有交點函式有零點.
3、函式零點的求法:
求函式的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯絡起來,並利用函式的性質找出零點.
4、二次函式的零點:
二次函式.
1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.
3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點.
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連線的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據具體問題中的數量關係列不等式(組)並解決簡單實際問題
③用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、稜錐
S-底面積h-高V=Sh/3
7、稜臺
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C—底面周長
S底—底面積,S側—側面積,S表—表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓臺
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
複數的概念:
形如a+bi(a,b∈R)的數叫複數,其中i叫做虛數單位。全體複數所成的集合叫做複數集,用字母C表示。
複數的表示:
複數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做複數的代數形式,其中a叫複數的實部,b叫複數的虛部。
複數的幾何意義:
(1)複平面、實軸、虛軸:
點Z的橫座標是a,縱座標是b,複數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角座標系來表示複數的平面叫做複平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)複數的幾何意義:複數集C和複平面內所有的點所成的集合是一一對應關係,即
這是因為,每一個複數有複平面內惟一的一個點和它對應;反過來,複平面內的每一個點,有惟一的一個複數和它對應。
這就是複數的一種幾何意義,也就是複數的另一種表示方法,即幾何表示方法。
複數的模:
複數z=a+bi(a、b∈R)在複平面上對應的點Z(a,b)到原點的距離叫複數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關係:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的週期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
複數模的性質:
複數與實數、虛數、純虛數及0的關係:
對於複數a+bi(a、b∈R),當且僅當b=0時,複數a+bi(a、b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關係是普遍存在的,我們用數學符號連線兩個數或代數式以表示它們之間的不等關係,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
複習指導
1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.“一種方法”待定係數法:求代數式的範圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出引數,最後利用不等式的性質求出目標式的範圍.
3.“兩條常用性質”
(1)倒數性質:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,則
①真分數的性質:<;>(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
不等式的判定:
①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大於,小於,小於等於,大於等於,不等於”,其中“≤”又叫作不大於,“≥”叫作不小於;
②在不等式“a>b”或“a
③不等號的開口所對的數較大,不等號的尖頭所對的數較小;
④在列不等式時,一定要注意不等式關係的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c<0時,a>bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關係有兩種:“”和“”即推出關係和等價關係。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
②關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函式性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關係。
高中數學集合複習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有①確定性;②互異性;③無序性
2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法
(3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的物件集合在一起就稱為一個集合。組成集合的物件叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的物件的全體組成的一個集合。
2、元素與集合的關係元素與集合的`關係有屬於和不屬於兩種:
元素a屬於集合A,記做a∈A;元素a不屬於集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設A是一個給定的集合,_是某一具體物件,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對於一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據他含有的元素個數的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數是可數的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等於所有點”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規定常見的數集用特定的字母表示,下面是幾種常見的數集表示方法,請牢記。
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記做N。
(2)非負整數集內排出0的集合,也稱正整數集,記做N_或N+。
(3)全體整數的集合通常簡稱為整數集Z。
(4)全體有理數的集合通常簡稱為有理數集,記做Q。
(5)全體實數的集合通常簡稱為實數集,記做R。