解一元二次方程數學知識點總結
解一元二次方程數學知識點總結
總結是事後對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以幫助我們總結以往思想,發揚成績,不如靜下心來好好寫寫總結吧。總結一般是怎麼寫的呢?下面是小編為大家整理的解一元二次方程數學知識點總結,僅供參考,希望能夠幫助到大家。
解一元二次方程的基本思想方法是透過“降次”將它化為兩個一元一次方程。
1.直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.
直接開平方法就是平方的逆運算.通常用根號表示其運算結果.
2.配方法
透過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。
(1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)係數化1:將二次項係數化為1
(3)移項:將常數項移到等號右側
(4)配方:等號左右兩邊同時加上一次項係數一半的平方
(5)變形:將等號左邊的代數式寫成完全平方形式
(6)開方:左右同時開平方
(7)求解:整理即可得到原方程的根
3、公式法
公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初中數學整式的加減
1、整式加減的理論根據是:去括號法則,合併同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然後準確合併同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連線。
(2)按去括號法則去括號。
(3)合併同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對於某些特殊的代數式,可採用“整體代入”進行計算。
初中數學資料的分析知識點
1、平均數
①一般地,對於n個數x1x2...xn,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組資料裡的各個資料的“重要程度”未必相同,因而在計算,這組資料的平均數時,往往給每個資料一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個資料的平均數)叫做這組資料的中位數。
②一組資料中出現次數最多的那個資料叫做這組資料的眾數。
③平均數、中位數和眾數都是描述資料集中趨勢的.統計量。
④計算平均數時,所有資料都參加運算,它能充分地利用資料所提供的資訊,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有資料的資訊。
⑥各個資料重複次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析資料的集中趨勢
4、資料的離散程度
①實際生活中,除了關心資料的集中趨勢外,人們還關注資料的離散程度,即它們相對於集中趨勢的偏離情況。一組資料中最大資料與最小資料的差,(稱為極差),就是刻畫資料離散程度的一個統計量。
②數學上,資料的離散程度還可以用方差或標準差刻畫。
③方差是各個資料與平均數差的平方的平均數。
④其中是x1,x2.....xn平均數,s2是方差,而標準差就是方差的算術平方根。
⑤一般而言,一組資料的極差、方差或標準差越小,這組資料就越穩定。