高二化學知識點總結14篇
高二化學知識點總結14篇
總結就是對一個時期的學習、工作或其完成情況進行一次全面系統的回顧和分析的書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。總結一般是怎麼寫的呢?下面是小編幫大家整理的高二化學知識點總結,希望對大家有所幫助。
高二化學知識點總結 篇1
高二化學有機物知識點:重要的物理性質
1.有機物的溶解性
(1)難溶於水的有:各類烴、鹵代烴、硝基化合物、酯、絕大多數高聚物、高階的(指分子中碳原子數目較多的,下同)醇、醛、羧酸等。
(2)易溶於水的有:低階的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及鹽、氨基酸及鹽、單糖、二糖。(它們都能與水形成氫鍵)。
(3)具有特殊溶解性的:
①乙醇是一種很好的溶劑,既能溶解許多無機物,又能溶解許多有機物,所以常用乙醇來溶解植物色素或其中的藥用成分,也常用乙醇作為反應的溶劑,使參加反應的有機物和無機物均能溶解,增大接觸面積,提高反應速率。例如,在油脂的皂化反應中,加入乙醇既能溶解NaOH,又能溶解油脂,讓它們在均相(同一溶劑的溶液)中充分接觸,加快反應速率,提高反應限度。
②苯酚:室溫下,在水中的溶解度是9.3g(屬可溶),易溶於乙醇等有機溶劑,當溫度高於65℃時,能與水混溶,冷卻後分層,上層為苯酚的水溶液,下層為水的苯酚溶液,振盪後形成乳濁液。苯酚易溶於鹼溶液和純鹼溶液,這是因為生成了易溶性的鈉鹽。
③乙酸乙酯在飽和碳酸鈉溶液中更加難溶,同時飽和碳酸鈉溶液還能透過反應吸收揮發出的乙酸,溶解吸收揮發出的乙醇,便於聞到乙酸乙酯的香味。
④有的澱粉、蛋白質可溶於水形成膠體。蛋白質在濃輕金屬鹽(包括銨鹽)溶液中溶解度減小,會析出(即鹽析,皂化反應中也有此操作)。但在稀輕金屬鹽(包括銨鹽)溶液中,蛋白質的溶解度反而增大。
⑤線型和部分支鏈型高聚物可溶於某些有機溶劑,而體型則難溶於有機溶劑。
⑥氫氧化銅懸濁液可溶於多羥基化合物的溶液中,如甘油、葡萄糖溶液等,形成絳藍色溶液。
2.有機物的密度
(1)小於水的密度,且與水(溶液)分層的有:各類烴、一氯代烴、酯(包括油脂)
(2)大於水的密度,且與水(溶液)分層的有:多氯代烴、溴代烴(溴苯等)、碘代烴、硝基苯
高二化學有機物知識點:重要的反應
4.既能與強酸,又能與強鹼反應的物質
(1)2Al + 6H+ == 2 Al3+ + 3H2↑ 2Al + 2OH- + 2H2O == 2 AlO2- + 3H2↑
(2)Al2O3 + 6H+ == 2 Al3+ + 3H2O Al2O3 + 2OH- == 2 AlO2- + H2O
(3)Al(OH)3 + 3H+ == Al3+ + 3H2O Al(OH)3 + OH- == AlO2- + 2H2O
(4)弱酸的酸式鹽,如NaHCO3、NaHS等等
NaHCO3 + HCl == NaCl + CO2↑ + H2O NaHCO3 + NaOH == Na2CO3 + H2O
NaHS + HCl == NaCl + H2S↑ NaHS + NaOH == Na2S + H2O
(5)弱酸弱鹼鹽,如CH3COONH4、(NH4)2S等等
2CH3COONH4 + H2SO4 == (NH4)2SO4 + 2CH3COOH
CH3COONH4 + NaOH == CH3COONa + NH3↑+ H2O
(NH4)2S + H2SO4 == (NH4)2SO4 + H2S↑
(NH4)2S +2NaOH == Na2S + 2NH3↑+ 2H2O
(6)氨基酸,如甘氨酸等
H2NCH2COOH + HCl → HOOCCH2NH3Cl
H2NCH2COOH + NaOH → H2NCH2COONa + H2O
(7)蛋白質
蛋白質分子中的肽鏈的鏈端或支鏈上仍有呈酸性的—COOH和呈鹼性的—NH2,故蛋白質仍能與鹼和酸反應。
高二化學有機物知識點:有機物的鑑別
1.烯醛中碳碳雙鍵的檢驗
(1)若是純淨的液態樣品,則可向所取試樣中加入溴的四氯化碳溶液,若褪色,則證明含有碳碳雙鍵。
(2)若樣品為水溶液,則先向樣品中加入足量的新制Cu(OH)2懸濁液,加熱煮沸,充分反應後冷卻過濾,向濾液中加入稀硝酸酸化,再加入溴水,若褪色,則證明含有碳碳雙鍵。
★若直接向樣品水溶液中滴加溴水,則會有反應:—CHO + Br2 + H2O → —COOH + 2HBr而使溴水褪色。
2.二糖或多糖水解產物的檢驗
若二糖或多糖是在稀硫酸作用下水解的,則先向冷卻後的水解液中加入足量的NaOH溶液,中和稀硫酸,然後再加入銀氨溶液或新制的氫氧化銅懸濁液,(水浴)加熱,觀察現象,作出判斷。
3.如何檢驗溶解在苯中的苯酚?
取樣,向試樣中加入NaOH溶液,振盪後靜置、分液,向水溶液中加入鹽酸酸化,再滴入幾滴FeCl3溶液(或過量飽和溴水),若溶液呈紫色(或有白色沉澱生成),則說明有苯酚。
★若向樣品中直接滴入FeCl3溶液,則由於苯酚仍溶解在苯中,不得進入水溶液中與Fe3+進行離子反應;若向樣品中直接加入飽和溴水,則生成的三溴苯酚會溶解在苯中而看不到白色沉澱。
★若所用溴水太稀,則一方面可能由於生成溶解度相對較大的一溴苯酚或二溴苯酚,另一方面可能生成的三溴苯酚溶解在過量的苯酚之中而看不到沉澱。
4.如何檢驗實驗室製得的乙烯氣體中含有CH2=CH2、SO2、CO2、H2O?
將氣體依次透過無水硫酸銅、品紅溶液、飽和Fe2(SO4)3溶液、品紅溶液、澄清石灰水、檢驗水) (檢驗SO2) (除去SO2) (確認SO2已除盡)(檢驗CO2)
溴水或溴的四氯化碳溶液或酸性高錳酸鉀溶液(檢驗CH2=CH2)。
高二化學知識點總結 篇2
一、濃硫酸“五性”
酸性、強氧化性、吸水性、脫水性、難揮發性:
化合價不變只顯酸性
化合價半變既顯酸性又顯強氧化性
化合價全變只顯強氧化性
二、濃硝酸“四性”
酸性、強氧化性、不穩定性、揮發性:
化合價不變只顯酸性
化合價半變既顯酸性又顯強氧化性
化合價全變只顯強氧化性
三、烷烴系統命名法的步驟
(1)選主鏈,稱某烷
(2)編號位,定支鏈
(3)取代基,寫在前,注位置,短線連
(4)不同基,簡到繁,相同基,合併算
烷烴的系統命名法使用時應遵循兩個基本原則:
①最簡化原則
②明確化原則,主要表現在一長一近一多一小,即“一長”是主鏈要長,“一近”是編號起點離支鏈要近,“一多”是支鏈數目要多,“一小”是支鏈位置號碼之和要小,這些原則在命名時或判斷命名的正誤時均有重要的指導意義。
四、氧化還原反應配平
標價態、列變化、求總數、定係數、後檢查
一標出有變的元素化合價;
二列出化合價升降變化;
三找出化合價升降的最小公倍數,使化合價升高和降低的數目相等;
四定出氧化劑、還原劑、氧化產物、還原產物的係數;
五平:觀察配平其它物質的係數;
六查:檢查是否原子守恆、電荷守恆(通常透過檢查氧元素的原子數),畫上等號。
高二化學知識點總結 篇3
氯及其化合物,SiO2+2NaOH==Na2SiO3+H2O,
①物理性質:通常是黃綠色、密度比空氣大、有刺激性氣味氣體,能溶於水,有毒。
②化學性質:氯原子易得電子,使活潑的非金屬元素。氯氣與金屬、非金屬等發生氧化還原反應,一般作氧化劑。與水、鹼溶液則發生自身氧化還原反應,既作氧化劑又作還原劑。
拓展1、氯水:氯水為黃綠色,所含Cl2有少量與水反應(Cl2+H2O==HCl+HClO),大部分仍以分子形式存在,其主要溶質是Cl2。新制氯水含Cl2、H2O、HClO、H+、Cl-、ClO-、OH-等微粒
拓展2、次氯酸:次氯酸(HClO)是比H2CO3還弱的酸,溶液中主要以HClO分子形式存在。是一種具有強氧化性(能殺菌、消毒、漂白)的易分解(分解變成HCl和O2)的弱酸。拓展3、漂白粉:次氯酸鹽比次氯酸穩定,容易儲存,工業上以Cl2和石灰乳為原料製取漂白粉,其主要成分是CaCl2和Ca(ClO)2,有效成分是Ca(ClO)2,須和酸(或空氣中CO2)作用產生次氯酸,才能發揮漂白作用。
二氧化硫
①物理性質:無色,刺激性氣味,氣體,有毒,易液化,易溶於水(1:40),密度比空氣大
②化學性質:
a、酸性氧化物:可與水反應生成相應的酸——亞硫酸(中強酸):SO2+H2OH2SO3可與鹼反應生成鹽和水:SO2+2NaOH==Na2SO3+H2O,SO2+Na2SO3+H2O==2NaHSO3b、具有漂白性:可使品紅溶液褪色,但是是一種暫時性的漂白
c、具有還原性:SO2+Cl2+2H2O==H2SO4+2HCl
高二化學知識點總結 篇4
第一章
一、焓變反應熱
1.反應熱:一定條件下,一定物質的量的反應物之間完全反應所放出或吸收的熱量
2.焓變(ΔH)的意義:在恆壓條件下進行的化學反應的熱效應
(1)符號:△H(2)。單位:kJ/mol
3、產生原因:化學鍵斷裂——吸熱化學鍵形成——放熱
放出熱量的化學反應。(放熱>吸熱)△H為“-”或△H<0
吸收熱量的化學反應。(吸熱>放熱)△H為“+”或△H>0
☆常見的放熱反應:①所有的燃燒反應②酸鹼中和反應
③大多數的化合反應④金屬與酸的反應
⑤生石灰和水反應⑥濃硫酸稀釋、氫氧化鈉固體溶解等
☆常見的吸熱反應:①晶體Ba(OH)2·8H2O與NH4Cl②大多數的分解反應
③以H2、CO、C為還原劑的氧化還原反應④銨鹽溶解等
二、熱化學方程式
書寫化學方程式注意要點:
①熱化學方程式必須標出能量變化。
②熱化學方程式中必須標明反應物和生成物的聚集狀態(g,l,s分別表示固態,液態,氣態,水溶液中溶質用aq表示)
③熱化學反應方程式要指明反應時的溫度和壓強。
④熱化學方程式中的化學計量數可以是整數,也可以是分數
⑤各物質係數加倍,△H加倍;反應逆向進行,△H改變符號,數值不變
三、燃燒熱
1.概念:25℃,101kPa時,1mol純物質完全燃燒生成穩定的化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。
※注意以下幾點:
①研究條件:101kPa
②反應程度:完全燃燒,產物是穩定的氧化物。
③燃燒物的物質的量:1mol
④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)
四、中和熱
1.概念:在稀溶液中,酸跟鹼發生中和反應而生成1molH2O,這時的反應熱叫中和熱。
2.強酸與強鹼的中和反應其實質是H+和OH-反應,其熱化學方程式為:
H+(aq)+OH-(aq)=H2O(l)ΔH=-57、3kJ/mol
3.弱酸或弱鹼電離要吸收熱量,所以它們參加中和反應時的中和熱小於57、3kJ/mol。
4.中和熱的測定實驗
五、蓋斯定律
1.內容:化學反應的反應熱只與反應的始態(各反應物)和終態(各生成物)有關,而與具體反應進行的途徑無關,如果一個反應可以分幾步進行,則各分步反應的反應熱之和與該反應一步完成的反應熱是相同的。
第二章
一、化學反應速率
1、化學反應速率(v)
⑴定義:用來衡量化學反應的快慢,單位時間內反應物或生成物的物質的量的變化
⑵表示方法:單位時間內反應濃度的減少或生成物濃度的增加來表示
⑶計算公式:v=Δc/Δt(υ:平均速率,Δc:濃度變化,Δt:時間)單位:mol/(L·s)
⑷影響因素:
①決定因素(內因):反應物的性質(決定因素)
②條件因素(外因):反應所處的條件
2、※注意:
(1)、參加反應的物質為固體和液體,由於壓強的變化對濃度幾乎無影響,可以認為反應速率不變。
(2)、惰性氣體對於速率的影響
①恆溫恆容時:充入惰性氣體→總壓增大,但是各分壓不變,各物質濃度不變→反應速率不變
②恆溫恆體時:充入惰性氣體→體積增大→各反應物濃度減小→反應速率減慢
二、化學平衡
(一)1、定義:
化學平衡狀態:一定條件下,當一個可逆反應進行到正逆反應速率相等時,更組成成分濃度不再改變,達到表面上靜止的一種“平衡”,這就是這個反應所能達到的限度即化學平衡狀態。
2、化學平衡的特徵
逆(研究前提是可逆反應)
等(同一物質的正逆反應速率相等)
動(動態平衡)
定(各物質的濃度與質量分數恆定)
變(條件改變,平衡發生變化)
3、判斷平衡的依據
判斷可逆反應達到平衡狀態的方法和依據
(二)影響化學平衡移動的因素
1、濃度對化學平衡移動的影響
(1)影響規律:在其他條件不變的情況下,增大反應物的濃度或減少生成物的濃度,都可以使平衡向正方向移動;增大生成物的濃度或減小反應物的濃度,都可以使平衡向逆方向移動
(2)增加固體或純液體的量,由於濃度不變,所以平衡_不移動_
(3)在溶液中進行的反應,如果稀釋溶液,反應物濃度__減小__,生成物濃度也_減小_,V正_減小___,V逆也_減小____,但是減小的程度不同,總的結果是化學平衡向反應方程式中化學計量數之和__大___的方向移動。
2、溫度對化學平衡移動的影響
影響規律:在其他條件不變的情況下,溫度升高會使化學平衡向著___吸熱反應______方向移動,溫度降低會使化學平衡向著_放熱反應__方向移動。
3、壓強對化學平衡移動的影響
影響規律:其他條件不變時,增大壓強,會使平衡向著__體積縮小___方向移動;減小壓強,會使平衡向著___體積增大__方向移動。
注意:(1)改變壓強不能使無氣態物質存在的化學平衡發生移動
(2)氣體減壓或增壓與溶液稀釋或濃縮的化學平衡移動規律相似
4、催化劑對化學平衡的影響:由於使用催化劑對正反應速率和逆反應速率影響的程度是等同的,所以平衡__不移動___。但是使用催化劑可以影響可逆反應達到平衡所需的_時間_。
5、勒夏特列原理(平衡移動原理):如果改變影響平衡的條件之一(如溫度,壓強,濃度),平衡向著能夠減弱這種改變的方向移動。
三、化學平衡常數
(一)定義:在一定溫度下,當一個反應達到化學平衡時,___生成物濃度冪之積與反應物濃度冪之積的比值是一個常數____比值。符號:__K__
(二)使用化學平衡常數K應注意的問題:
1、表示式中各物質的濃度是__變化的濃度______,不是起始濃度也不是物質的量。
2、K只與__溫度(T)___有關,與反應物或生成物的濃度無關。
3、反應物或生產物中有固體或純液體存在時,由於其濃度是固定不變的,可以看做是“1”而不代入公式。
4、稀溶液中進行的反應,如有水參加,水的濃度不必寫在平衡關係式中。
(三)化學平衡常數K的應用:
1、化學平衡常數值的大小是可逆反應__進行程度_____的標誌。K值越大,說明平衡時_生成物___的濃度越大,它的___正向反應___進行的程度越大,即該反應進行得越__完全___,反應物轉化率越_高___。反之,則相反。一般地,K>_105__時,該反應就進行得基本完全了。
2、可以利用K值做標準,判斷正在進行的可逆反應是否平衡及不平衡時向何方進行建立平衡。(Q:濃度積)
Q_〈__K:反應向正反應方向進行;
Q__=_K:反應處於平衡狀態;
Q_〉__K:反應向逆反應方向進行
3、利用K值可判斷反應的熱效應
若溫度升高,K值增大,則正反應為__吸熱___反應
若溫度升高,K值減小,則正反應為__放熱___反應
*四、等效平衡
1、概念:在一定條件下(定溫、定容或定溫、定壓),只是起始加入情況不同的同一可逆反應達到平衡後,任何相同組分的百分含量均相同,這樣的化學平衡互稱為等效平衡。
2、分類
(1)定溫,定容條件下的等效平衡
第一類:對於反應前後氣體分子數改變的可逆反應:必須要保證化學計量數之比與原來相同;同時必須保證平衡式左右兩邊同一邊的物質的量與原來相同。
第二類:對於反應前後氣體分子數不變的可逆反應:只要反應物的物質的量的比例與原來相同即可視為二者等效。
(2)定溫,定壓的等效平衡
只要保證可逆反應化學計量數之比相同即可視為等效平衡。
五、化學反應進行的方向
1、反應熵變與反應方向:
(1)熵:物質的一個狀態函式,用來描述體系的混亂度,符號為S。單位:J?mol-1?K-1
(2)體系趨向於有序轉變為無序,導致體系的熵增加,這叫做熵增加原理,也是反應方向判斷的依據。
(3)同一物質,在氣態時熵值最大,液態時次之,固態時最小。即S(g)〉S(l)〉S(s)
2、反應方向判斷依據
在溫度、壓強一定的條件下,化學反應的判讀依據為:
ΔH-TΔS〈0反應能自發進行
ΔH-TΔS=0反應達到平衡狀態
ΔH-TΔS〉0反應不能自發進行
注意:(1)ΔH為負,ΔS為正時,任何溫度反應都能自發進行
(2)ΔH為正,ΔS為負時,任何溫度反應都不能自發進行
第三章
一、弱電解質的電離
1、定義:電解質:在水溶液中或熔化狀態下能導電的化合物,叫電解質。
非電解質:在水溶液中或熔化狀態下都不能導電的化合物。
強電解質:在水溶液裡全部電離成離子的電解質。
弱電解質:在水溶液裡只有一部分分子電離成離子的電解質。
高二化學知識點總結 篇5
1、定義:
電解質:在水溶液中或熔化狀態下能導電的化合物,叫電解質。
非電解質:在水溶液中或熔化狀態下都不能導電的化合物。
強電解質:在水溶液裡全部電離成離子的電解質。
弱電解質:在水溶液裡只有一部分分子電離成離子的電解質。
2、電解質與非電解質本質區別:
電解質——離子化合物或共價化合物
非電解質——共價化合物
注意:
①電解質、非電解質都是化合物
②SO2、NH3、CO2等屬於非電解質
③強電解質不等於易溶於水的化合物(如BaSO4不溶於水,但溶於水的BaSO4全部電離,故BaSO4為強電解質)——電解質的強弱與導電性、溶解性無關。
3、電離平衡:
在一定的條件下,當電解質分子電離成離子的速率和離子結合成分子時,電離過程就達到了平衡狀態,這叫電離平衡。
4、影響電離平衡的因素:
A、溫度:電離一般吸熱,升溫有利於電離。
B、濃度:濃度越大,電離程度越小;溶液稀釋時,電離平衡向著電離的方向移動。
C、同離子效應:在弱電解質溶液里加入與弱電解質具有相同離子的電解質,會減弱電離。
D、其他外加試劑:加入能與弱電解質的電離產生的某種離子反應的物質時,有利於電離。
5、電離方程式的書寫:
用可逆符號弱酸的電離要分佈寫(第一步為主)
6、電離常數:
在一定條件下,弱電解質在達到電離平衡時,溶液中電離所生成的各種離子濃度的乘積,跟溶液中未電離的分子濃度的比是一個常數。叫做電離平衡常數,(一般用Ka表示酸,Kb表示鹼。)
表示方法:ABA++B-
Ki=[A+][B-]/[AB]
7、影響因素:
a、電離常數的大小主要由物質的本性決定。
b、電離常數受溫度變化影響,不受濃度變化影響,在室溫下一般變化不大。
C、同一溫度下,不同弱酸,電離常數越大,其電離程度越大,酸性越強。如:H2SO3>H3PO4>HF>CH3COOH>H2CO3>H2S>HClO
高二化學知識點總結 篇6
一、焓變、反應熱
1、反應熱:一定條件下,一定物質的量的反應物之間完全反應所放出或吸收的熱量
2、焓變(ΔH)的意義:在恆壓條件下進行的化學反應的熱效應
(1)符號:△H
(2)單位:kJ/mol
3、產生原因:
化學鍵斷裂——吸熱
化學鍵形成——放熱
放出熱量的化學反應。(放熱>吸熱)△H為“—”或△H<0
吸收熱量的化學反應。(吸熱>放熱)△H為“+”或△H >0
常見的放熱反應:
①所有的燃燒反應
②酸鹼中和反應
③大多數的化合反應
④金屬與酸的反應
⑤生石灰和水反應
⑥濃硫酸稀釋、氫氧化鈉固體溶解等
常見的吸熱反應:
①晶體Ba(OH)2·8H2O與NH4Cl
②大多數的分解反應
③以H2、CO、C為還原劑的氧化還原反應
④銨鹽溶解等
二、熱化學方程式
書寫化學方程式注意要點:
①熱化學方程式必須標出能量變化。
②熱化學方程式中必須標明反應物和生成物的聚集狀態(g,l,s分別表示固態,液態,氣態,水溶液中溶質用aq表示)
③熱化學反應方程式要指明反應時的溫度和壓強。
④熱化學方程式中的化學計量數可以是整數,也可以是分數
⑤各物質係數加倍,△H加倍;反應逆向進行,△H改變符號,數值不變
三、燃燒熱
1、概念:25 ℃,101 kPa時,1 mol純物質完全燃燒生成穩定的化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。
注意以下幾點:
①研究條件:101 kPa
②反應程度:完全燃燒,產物是穩定的氧化物
③燃燒物的物質的量:1 mol
④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)
四、中和熱
1、概念:在稀溶液中,酸跟鹼發生中和反應而生成1mol H2O,這時的反應熱叫中和熱。
2、強酸與強鹼的中和反應其實質是H+和OH—反應,其熱化學方程式為:
H+(aq)+OH—(aq)=H2O(l)
ΔH=—57。3kJ/mol
3、弱酸或弱鹼電離要吸收熱量,所以它們參加中和反應時的中和熱小於57。3kJ/mol。
4、中和熱的測定實驗
高二化學知識點總結 篇7
一、化學反應的速率
1、化學反應是怎樣進行的
(1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。
(2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。
(3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。
2、化學反應速率
(1)概念:
單位時間內反應物的減小量或生成物的增加量可以表示反應的快慢,即反應的速率,用符號v表示。
(2)表示式:
(3)特點
對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的化學反應速率之比等於化學方程式中各物質的係數之比。
3、濃度對反應速率的影響
(1)反應速率常數(K)
反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受溫度、催化劑、固體表面性質等因素的影響。
(2)濃度對反應速率的影響
增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。
增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。
(3)壓強對反應速率的影響
壓強隻影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。
壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是透過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。
4、溫度對化學反應速率的影響
(1)經驗公式
阿倫尼烏斯總結出了反應速率常數與溫度之間關係的經驗公式:
式中A為比例係數,e為自然對數的底,R為摩爾氣體常數量,Ea為活化能。
由公式知,當Ea>0時,升高溫度,反應速率常數增大,化學反應速率也隨之增大。可知,溫度對化學反應速率的影響與活化能有關。
(2)活化能Ea。
活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能Ea值越大,改變溫度對反應速率的影響越大。
5、催化劑對化學反應速率的影響
(1)催化劑對化學反應速率影響的規律:
催化劑大多能加快反應速率,原因是催化劑能透過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。
(2)催化劑的特點:
催化劑能加快反應速率而在反應前後本身的質量和化學性質不變。
催化劑具有選擇性。
催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。
二、化學反應條件的最佳化——工業合成氨
1、合成氨反應的限度
合成氨反應是一個放熱反應,同時也是氣體物質的量減小的熵減反應,故降低溫度、增大壓強將有利於化學平衡向生成氨的方向移動。
2、合成氨反應的速率
(1)高壓既有利於平衡向生成氨的方向移動,又使反應速率加快,但高壓對裝置的要求也高,故壓強不能特別大。
(2)反應過程中將氨從混合氣中分離出去,能保持較高的反應速率。
(3)溫度越高,反應速率進行得越快,但溫度過高,平衡向氨分解的方向移動,不利於氨的合成。
(4)加入催化劑能大幅度加快反應速率。
3、合成氨的適宜條件
在合成氨生產中,達到高轉化率與高反應速率所需要的條件有時是矛盾的,故應該尋找以較高反應速率並獲得適當平衡轉化率的反應條件:一般用鐵做催化劑,控制反應溫度在700K左右,壓強範圍大致在1×107Pa~1×108Pa之間,並採用N2與H2分壓為1∶2.8的投料比。
高二化學知識點總結 篇8
第一章、化學反應與能量轉化
化學反應的實質是反應物化學鍵的斷裂和生成物化學鍵的形成,化學反應過程中伴隨著能量的釋放或吸收。
一、化學反應的熱效應
1、化學反應的反應熱
(1)反應熱的概念:
當化學反應在一定的溫度下進行時,反應所釋放或吸收的熱量稱為該反應在此溫度下的熱效應,簡稱反應熱。用符號Q表示。
(2)反應熱與吸熱反應、放熱反應的關係。
Q>0時,反應為吸熱反應;Q<0時,反應為放熱反應。
(3)反應熱的測定
測定反應熱的儀器為量熱計,可測出反應前後溶液溫度的變化,根據體系的熱容可計算出反應熱,計算公式如下:
Q=-C(T2-T1)
式中C表示體系的熱容,T1、T2分別表示反應前和反應後體系的溫度。實驗室經常測定中和反應的反應熱。
2、化學反應的焓變
(1)反應焓變
物質所具有的能量是物質固有的性質,可以用稱為“焓”的物理量來描述,符號為H,單位為kJ·mol-1。
反應產物的總焓與反應物的總焓之差稱為反應焓變,用ΔH表示。
(2)反應焓變ΔH與反應熱Q的關係。
對於等壓條件下進行的化學反應,若反應中物質的能量變化全部轉化為熱能,則該反應的反應熱等於反應焓變,其數學表示式為:Qp=ΔH=H(反應產物)-H(反應物)。
(3)反應焓變與吸熱反應,放熱反應的關係:
ΔH>0,反應吸收能量,為吸熱反應。
ΔH<0,反應釋放能量,為放熱反應。
(4)反應焓變與熱化學方程式:
把一個化學反應中物質的變化和反應焓變同時表示出來的化學方程式稱為熱化學方程式,如:H2(g)+
O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1
書寫熱化學方程式應注意以下幾點:
①化學式後面要註明物質的聚集狀態:固態(s)、液態(l)、氣態(g)、溶液(aq)。
②化學方程式後面寫上反應焓變ΔH,ΔH的單位是J·mol-1或kJ·mol-1,且ΔH後註明反應溫度。
③熱化學方程式中物質的係數加倍,ΔH的數值也相應加倍。
3、反應焓變的計算
(1)蓋斯定律
對於一個化學反應,無論是一步完成,還是分幾步完成,其反應焓變一樣,這一規律稱為蓋斯定律。
(2)利用蓋斯定律進行反應焓變的計算。
常見題型是給出幾個熱化學方程式,合併出題目所求的熱化學方程式,根據蓋斯定律可知,該方程式的ΔH為上述各熱化學方程式的ΔH的代數和。
(3)根據標準摩爾生成焓,ΔfHmθ計算反應焓變ΔH。
對任意反應:aA+bB=cC+dD
ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]
第二章、化學平衡
一、化學反應的速率
1、化學反應是怎樣進行的
(1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。
(2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。
(3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。
2、化學反應速率
(1)概念:
單位時間內反應物的減小量或生成物的增加量可以表示反應的快慢,即反應的速率,用符號v表示。
(2)表示式:v=△c/△t
(3)特點
對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的化學反應速率之比等於化學方程式中各物質的係數之比。
3、濃度對反應速率的影響
(1)反應速率常數(K)
反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受溫度、催化劑、固體表面性質等因素的影響。
(2)濃度對反應速率的影響
增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。
增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。
(3)壓強對反應速率的影響
壓強隻影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。
壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是透過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。
4、溫度對化學反應速率的影響
(1)經驗公式
阿倫尼烏斯總結出了反應速率常數與溫度之間關係的經驗公式:
式中A為比例係數,e為自然對數的底,R為摩爾氣體常數量,Ea為活化能。
由公式知,當Ea>0時,升高溫度,反應速率常數增大,化學反應速率也隨之增大。可知,溫度對化學反應速率的影響與活化能有關。
(2)活化能Ea。
活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能Ea值越大,改變溫度對反應速率的影響越大。
5、催化劑對化學反應速率的影響
(1)催化劑對化學反應速率影響的規律:
催化劑大多能加快反應速率,原因是催化劑能透過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。
(2)催化劑的特點:
催化劑能加快反應速率而在反應前後本身的質量和化學性質不變。
催化劑具有選擇性。
催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。
二、化學反應條件的最佳化——工業合成氨
1、合成氨反應的限度
合成氨反應是一個放熱反應,同時也是氣體物質的量減小的熵減反應,故降低溫度、增大壓強將有利於化學平衡向生成氨的方向移動。
2、合成氨反應的速率
(1)高壓既有利於平衡向生成氨的方向移動,又使反應速率加快,但高壓對裝置的要求也高,故壓強不能特別大。
(2)反應過程中將氨從混合氣中分離出去,能保持較高的反應速率。
(3)溫度越高,反應速率進行得越快,但溫度過高,平衡向氨分解的方向移動,不利於氨的合成。
(4)加入催化劑能大幅度加快反應速率。
3、合成氨的`適宜條件
在合成氨生產中,達到高轉化率與高反應速率所需要的條件有時是矛盾的,故應該尋找以較高反應速率並獲得適當平衡轉化率的反應條件:一般用鐵做催化劑,控制反應溫度在700K左右,壓強範圍大致在1×107Pa~1×108Pa之間,並採用N2與H2分壓為1∶2.8的投料比。
二、化學反應的限度
1、化學平衡常數
(1)對達到平衡的可逆反應,生成物濃度的係數次方的乘積與反應物濃度的係數次方的乘積之比為一常數,該常數稱為化學平衡常數,用符號K表示。
(2)平衡常數K的大小反映了化學反應可能進行的程度(即反應限度),平衡常數越大,說明反應可以進行得越完全。
(3)平衡常數表示式與化學方程式的書寫方式有關。對於給定的可逆反應,正逆反應的平衡常數互為倒數。
(4)藉助平衡常數,可以判斷反應是否到平衡狀態:當反應的濃度商Qc與平衡常數Kc相等時,說明反應達到平衡狀態。
2、反應的平衡轉化率
(1)平衡轉化率是用轉化的反應物的濃度與該反應物初始濃度的比值來表示。如反應物A的平衡轉化率的表示式為:
α(A)=
(2)平衡正向移動不一定使反應物的平衡轉化率提高。提高一種反應物的濃度,可使另一反應物的平衡轉化率提高。
(3)平衡常數與反應物的平衡轉化率之間可以相互計算。
3、反應條件對化學平衡的影響
(1)溫度的影響
升高溫度使化學平衡向吸熱方向移動;降低溫度使化學平衡向放熱方向移動。溫度對化學平衡的影響是透過改變平衡常數實現的。
(2)濃度的影響
增大生成物濃度或減小反應物濃度,平衡向逆反應方向移動;增大反應物濃度或減小生成物濃度,平衡向正反應方向移動。
溫度一定時,改變濃度能引起平衡移動,但平衡常數不變。化工生產中,常透過增加某一價廉易得的反應物濃度,來提高另一昂貴的反應物的轉化率。
(3)壓強的影響
ΔVg=0的反應,改變壓強,化學平衡狀態不變。
ΔVg≠0的反應,增大壓強,化學平衡向氣態物質體積減小的方向移動。
(4)勒夏特列原理
由溫度、濃度、壓強對平衡移動的影響可得出勒夏特列原理:如果改變影響平衡的一個條件(濃度、壓強、溫度等)平衡向能夠減弱這種改變的方向移動。
三、化學反應的方向
1、反應焓變與反應方向
放熱反應多數能自發進行,即ΔH<0的反應大多能自發進行。有些吸熱反應也能自發進行。如NH4HCO3與CH3COOH的反應。有些吸熱反應室溫下不能進行,但在較高溫度下能自發進行,如CaCO3高溫下分解生成CaO、CO2。
2、反應熵變與反應方向
熵是描述體系混亂度的概念,熵值越大,體系混亂度越大。反應的熵變ΔS為反應產物總熵與反應物總熵之差。產生氣體的反應為熵增加反應,熵增加有利於反應的自發進行。
3、焓變與熵變對反應方向的共同影響
ΔH-TΔS<0反應能自發進行。
ΔH-TΔS=0反應達到平衡狀態。
ΔH-TΔS>0反應不能自發進行。
在溫度、壓強一定的條件下,自發反應總是向ΔH-TΔS<0的方向進行,直至平衡狀態。
第三章、水溶液中的電離平衡
一、水溶液
1、水的電離
H2OH++OH-
水的離子積常數KW=[H+][OH-],25℃時,KW=1.0×10-14mol2·L-2。溫度升高,有利於水的電離,KW增大。
2、溶液的酸鹼度
室溫下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7
酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7
鹼性溶液:[H+]<[oh-],[oh-]>1.0×10-7mol·L-1,pH>7
3、電解質在水溶液中的存在形態
(1)強電解質
強電解質是在稀的水溶液中完全電離的電解質,強電解質在溶液中以離子形式存在,主要包括強酸、強鹼和絕大多數鹽,書寫電離方程式時用“=”表示。
(2)弱電解質
在水溶液中部分電離的電解質,在水溶液中主要以分子形態存在,少部分以離子形態存在,存在電離平衡,主要包括弱酸、弱鹼、水及極少數鹽,書寫電離方程式時用“”表示。
二、弱電解質的電離及鹽類水解
1、弱電解質的電離平衡。
(1)電離平衡常數
在一定條件下達到電離平衡時,弱電解質電離形成的各種離子濃度的乘積與溶液中未電離的分子濃度之比為一常數,叫電離平衡常數。
弱酸的電離平衡常數越大,達到電離平衡時,電離出的H+越多。多元弱酸分步電離,且每步電離都有各自的電離平衡常數,以第一步電離為主。
(2)影響電離平衡的因素,以CH3COOHCH3COO-+H+為例。
加水、加冰醋酸,加鹼、升溫,使CH3COOH的電離平衡正向移動,加入CH3COONa固體,加入濃鹽酸,降溫使CH3COOH電離平衡逆向移動。
2、鹽類水解
(1)水解實質
鹽溶於水後電離出的離子與水電離的H+或OH-結合生成弱酸或弱鹼,從而打破水的電離平衡,使水繼續電離,稱為鹽類水解。
(2)水解型別及規律
①強酸弱鹼鹽水解顯酸性。
NH4Cl+H2ONH3·H2O+HCl
②強鹼弱酸鹽水解顯鹼性。
CH3COONa+H2OCH3COOH+NaOH
③強酸強鹼鹽不水解。
④弱酸弱鹼鹽雙水解。
Al2S3+6H2O=2Al(OH)3↓+3H2S↑
(3)水解平衡的移動
加熱、加水可以促進鹽的水解,加入酸或鹼能抑止鹽的水解,另外,弱酸根陰離子與弱鹼陽離子相混合時相互促進水解。
三、離子反應
1、離子反應發生的條件
(1)生成沉澱
既有溶液中的離子直接結合為沉澱,又有沉澱的轉化。
(2)生成弱電解質
主要是H+與弱酸根生成弱酸,或OH-與弱鹼陽離子生成弱鹼,或H+與OH-生成H2O。
(3)生成氣體
生成弱酸時,很多弱酸能分解生成氣體。
(4)發生氧化還原反應
強氧化性的離子與強還原性離子易發生氧化還原反應,且大多在酸性條件下發生。
2、離子反應能否進行的理論判據
(1)根據焓變與熵變判據
對ΔH-TΔS<0的離子反應,室溫下都能自發進行。
(2)根據平衡常數判據
離子反應的平衡常數很大時,表明反應的趨勢很大。
3、離子反應的應用
(1)判斷溶液中離子能否大量共存
相互間能發生反應的離子不能大量共存,注意題目中的隱含條件。
(2)用於物質的定性檢驗
根據離子的特性反應,主要是沉澱的顏色或氣體的生成,定性檢驗特徵性離子。
(3)用於離子的定量計算
常見的有酸鹼中和滴定法、氧化還原滴定法。
(4)生活中常見的離子反應。
硬水的形成及軟化涉及到的離子反應較多,主要有:
Ca2+、Mg2+的形成。
CaCO3+CO2+H2O=Ca2++2HCO3-
MgCO3+CO2+H2O=Mg2++2HCO3-
加熱煮沸法降低水的硬度:
Ca2++2HCO3-=CaCO3↓+CO2↑+H2O
Mg2++2HCO3-=MgCO3↓+CO2↑+H2O
或加入Na2CO3軟化硬水:
Ca2++CO32-=CaCO3↓,Mg2++CO32-=MgCO3↓
四、沉澱溶解平衡
1、沉澱溶解平衡與溶度積
(1)概念
當固體溶於水時,固體溶於水的速率和離子結合為固體的速率相等時,固體的溶解與沉澱的生成達到平衡狀態,稱為沉澱溶解平衡。其平衡常數叫做溶度積常數,簡稱溶度積,用Ksp表示。
PbI2(s)Pb2+(aq)+2I-(aq)
Ksp=[Pb2+][I-]2=7.1×10-9mol3·L-3
(2)溶度積Ksp的特點
Ksp只與難溶電解質的性質和溫度有關,與沉澱的量無關,且溶液中離子濃度的變化能引起平衡移動,但並不改變溶度積。
Ksp反映了難溶電解質在水中的溶解能力。
2、沉澱溶解平衡的應用
(1)沉澱的溶解與生成
根據濃度商Qc與溶度積Ksp的大小比較,規則如下:
Qc=Ksp時,處於沉澱溶解平衡狀態。
Qc>Ksp時,溶液中的離子結合為沉澱至平衡。
Qc
(2)沉澱的轉化
根據溶度積的大小,可以將溶度積大的沉澱可轉化為溶度積更小的沉澱,這叫做沉澱的轉化。沉澱轉化實質為沉澱溶解平衡的移動。
第四章電化學
一、化學能轉化為電能——電池
1、原電池的工作原理
(1)原電池的概念:
把化學能轉變為電能的裝置稱為原電池。
(2)Cu-Zn原電池的工作原理:
如圖為Cu-Zn原電池,其中Zn為負極,Cu為正極,構成閉合迴路後的現象是:Zn片逐漸溶解,Cu片上有氣泡產生,電流計指標發生偏轉。該原電池反應原理為:Zn失電子,負極反應為:Zn→Zn2++2e-;Cu得電子,正極反應為:2H++2e-→H2。電子定向移動形成電流。總反應為:Zn+CuSO4=ZnSO4+Cu。
(3)原電池的電能
若兩種金屬做電極,活潑金屬為負極,不活潑金屬為正極;若一種金屬和一種非金屬做電極,金屬為負極,非金屬為正極。
2、化學電源
(1)鋅錳乾電池
負極反應:Zn→Zn2++2e-;
正極反應:2NH4++2e-→2NH3+H2;
(2)鉛蓄電池
負極反應:Pb+SO42-=PbSO4+2e-
正極反應:PbO2+4H++SO42-+2e-=PbSO4+2H2O
放電時總反應:Pb+PbO2+2H2SO4=2PbSO4+2H2O。
充電時總反應:2PbSO4+2H2O=Pb+PbO2+2H2SO4。
(3)氫氧燃料電池
負極反應:2H2+4OH-→4H2O+4e-
正極反應:O2+2H2O+4e-→4OH-
電池總反應:2H2+O2=2H2O
二、電能轉化為化學能——電解
1、電解的原理
(1)電解的概念:
在直流電作用下,電解質在兩上電極上分別發生氧化反應和還原反應的過程叫做電解。電能轉化為化學能的裝置叫做電解池。
(2)電極反應:以電解熔融的NaCl為例:
陽極:與電源正極相連的電極稱為陽極,陽極發生氧化反應:2Cl-→Cl2↑+2e-。
陰極:與電源負極相連的電極稱為陰極,陰極發生還原反應:Na++e-→Na。
總方程式:2NaCl(熔)=(電解)2Na+Cl2↑
2、電解原理的應用
(1)電解食鹽水製備燒鹼、氯氣和氫氣。
陽極:2Cl-→Cl2+2e-
陰極:2H++e-→H2↑
總反應:2NaCl+2H2O
2NaOH+H2↑+Cl2↑
(2)銅的電解精煉。
粗銅(含Zn、Ni、Fe、Ag、Au、Pt)為陽極,精銅為陰極,CuSO4溶液為電解質溶液。
陽極反應:Cu→Cu2++2e-,還發生幾個副反應
Zn→Zn2++2e-;Ni→Ni2++2e-
Fe→Fe2++2e-
Au、Ag、Pt等不反應,沉積在電解池底部形成陽極泥。
陰極反應:Cu2++2e-→Cu
(3)電鍍:以鐵表面鍍銅為例
待鍍金屬Fe為陰極,鍍層金屬Cu為陽極,CuSO4溶液為電解質溶液。
陽極反應:Cu→Cu2++2e-
陰極反應:Cu2++2e-→Cu
3、金屬的腐蝕與防護
(1)金屬腐蝕
金屬表面與周圍物質發生化學反應或因電化學作用而遭到破壞的過程稱為金屬腐蝕。
(2)金屬腐蝕的電化學原理。
生鐵中含有碳,遇有雨水可形成原電池,鐵為負極,電極反應為:Fe→Fe2++2e-。水膜中溶解的氧氣被還原,正極反應為:O2+2H2O+4e-→4OH-,該腐蝕為“吸氧腐蝕”,總反應為:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解轉化為鐵鏽。若水膜在酸度較高的環境下,正極反應為:2H++2e-→H2↑,該腐蝕稱為“析氫腐蝕”。
(3)金屬的防護
金屬處於乾燥的環境下,或在金屬表面刷油漆、陶瓷、瀝青、塑膠及電鍍一層耐腐蝕性強的金屬防護層,破壞原電池形成的條件。從而達到對金屬的防護;也可以利用原電池原理,採用犧牲陽極保護法。也可以利用電解原理,採用外加電流陰極保護法。
高二化學知識點總結 篇9
第一章氮族元素
一、氮族元素N(氮)、P(磷)、As(砷)、Sb(銻)、Bi(鉍)
相似性遞變性
結構最外層電子數都是5個原子半徑隨N、P、As、Sb、Bi順序逐漸增大,核對外層電子吸引力減弱
性質最高價氧化物的通式為:R2O5
最高價氧化物對應水化物通式為:HRO3或H3RO4
氣態氫化物通式為:RH3
最高化合價+5,最低化合價-3單質從非金屬過渡到金屬,非金屬性:N>P>As,金屬性:Sb
最高價氧化物對應水化物酸性逐漸減弱
酸性:HNO3>H3PO4>H3AsO4>H3SbO4
與氫氣反應越來越困難
氣態氫化物穩定性逐漸減弱
穩定性:NH3>PH3>AsH3
二、氮氣(N2)
1、分子結構電子式:結構式:N≡N(分子裡N≡N鍵很牢固,結構很穩定)
2、物理性質:無色無味氣體,難溶於水,密度與空氣接近(所以收集N2不能用排空氣法!)
3、化學性質:(通常氮氣的化學性質不活潑,很難與其他物質發生反應,只有在高溫、高壓、放電等條件下,才能使N2中的共價鍵斷裂,從而與一些物質發生化學反應)
N2+3H22NH3N2+O2=2NO3Mg+N2=Mg3N2Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑
4、氮的固定:將氮氣轉化成氮的化合物,如豆科植物的根瘤菌天然固氮
三、氮氧化物(N2O、NO、N2O3、NO2、N2O4、N2O5)
N2O—笑氣硝酸酸酐—N2O5亞硝酸酸酐—N2O3重要的大氣汙染物—NONO2
NO—無色氣體,不溶於水,有毒(毒性同CO),有較強還原性2NO+O2=2NO2
NO2—紅棕色氣體(顏色同溴蒸氣),有毒,易溶於水,有強氧化性,造成光化學煙霧的主要因素
3NO2+H2O=2HNO3+NO2NO2N2O4(無色)302=2O3(光化學煙霧的形成)
鑑別NO2與溴蒸氣的方法:可用水或硝酸銀溶液(具體方法及現象從略)
NO、NO2、O2溶於水的計算:用總方程式4NO2+O2+2H2O=4HNO34NO+3O2+2H2O=4HNO3進行計算
四、磷
白磷紅磷
不同點1.分子結構化學式為P4,正四面體結構,化學式為P,結構複雜,不作介紹
2.顏色狀態白色蠟狀固體紅棕色粉末狀固體
3.毒性劇毒無毒
4.溶解性不溶於水,可溶於CS2不溶於水,不溶於CS2
5.著火點40℃240℃
6.儲存方法儲存在盛水的容器中密封儲存
相同點1.與O2反應點燃都生成P2O5,4P+5O22P2O5
P2O5+H2O2HPO3(偏磷酸,有毒)P2O5+3H2O2H3PO4(無毒)
2.與Cl2反應2P+3Cl22PCl32P+5Cl22PCl5
轉化白磷紅磷
五、氨氣
1、物理性質:無色有刺激性氣味的氣體,比空氣輕,易液化(作致冷劑),極易溶於水(1:700)
2、分子結構:電子式:結構式:(極性分子,三角錐型,鍵角107°18′)
3、化學性質:NH3+H2ONH3·H2ONH4++OH-(注意噴泉實驗、NH3溶於水後濃度的計算、加熱的成分、氨水與液氨)
NH3+HCl=NH4Cl(白煙,檢驗氨氣)4NH3+5O2===4NO+6H2O
4、實驗室製法(重點實驗)2NH4Cl+Ca(OH)2=2NH3↑+CaCl2+2H2O(該反應不能改為離子方程式?)
發生裝置:固+固(加熱)→氣,同制O2收集:向下排空氣法(不能用排水法)
檢驗:用溼潤的紅色石蕊試紙靠近容器口(試紙變藍)或將蘸有濃鹽酸的玻璃棒接近容器口(產生白煙)
乾燥:鹼石灰(裝在乾燥管裡)[不能用濃硫酸、無水氯化鈣、P2O5等乾燥劑]
注意事項:試管口塞一團棉花(防止空氣對流,影響氨的純度)或塞一團用稀硫酸浸溼的棉花(吸收多餘氨氣,防止汙染大氣)
氨氣的其他製法:加熱濃氨水,濃氨水與燒鹼(或CaO)固體混合等方法
5、銨鹽白色晶體,易溶於水,受熱分解,與鹼反應放出氨氣(加熱)。
NH4Cl=NH3↑+HCl↑(NH3+HCl=NH4Cl)NH4HCO3=NH3↑+H2O↑+CO2↑
高二化學知識點總結 篇10
1、狀態:
固態:飽和高階脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麥芽糖、澱粉、維生素、
醋酸(16.6℃以下);
氣態:C4以下的烷、烯、炔烴、甲醛、一氯甲烷、新戊烷;
液態:油狀:乙酸乙酯、油酸;
粘稠狀:石油、乙二醇、丙三醇.
2、氣味:
無味:甲烷、乙炔(常因混有PH3、H2S和AsH3而帶有臭味);
稍有氣味:乙烯;特殊氣味:甲醛、乙醛、甲酸和乙酸;香味:乙醇、低階酯;
3、顏色:白色:葡萄糖、多糖黑色或深棕色:石油
4、密度:
比水輕:苯、液態烴、一氯代烴、乙醇、乙醛、低階酯、汽油;
比水重:溴苯、CCl4,氯仿(CHCl3).
5、揮發性:乙醇、乙醛、乙酸.
6、水溶性:
不溶:高階脂肪酸、酯、溴苯、甲烷、乙烯、苯及同系物、石油、CCl4;
易溶:甲醛、乙酸、乙二醇;與水混溶:乙醇、乙醛、甲酸、丙三醇(甘油).
最簡式相同的有機物
1、CH:C2H2、C6H6(苯、稜晶烷、盆烯)、C8H8(立方烷、苯乙烯);
2、CH2:烯烴和環烷烴;3、CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖;
4、CnH2nO:飽和一元醛(或飽和一元酮)與二倍於其碳原子數的飽和一元羧酸或酯;
如乙醛(C2H4O)與丁酸及異構體(C4H8O2)5、炔烴(或二烯烴)與三倍於其碳
原子數的苯及苯的同系物.如:丙炔(C3H4)與丙苯(C9H12)
能與溴水發生化學反應而使溴水褪色或變色的物質
有機物:
⑴不飽和烴(烯烴、炔烴、二烯烴等)
⑵不飽和烴的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等)
⑶石油產品(裂化氣、裂解氣、裂化汽油等)
⑷含醛基的化合物(醛、甲酸、甲酸鹽、甲酸酯、葡萄糖、麥芽糖等)、酚類.
⑸天然橡膠(聚異戊二烯)
能萃取溴而使溴水褪色的物質
上層變無色的(ρ>1):鹵代烴(CCl4、氯仿、溴苯等);
下層變無色的(ρ0,m/4>1,m>4.分子式中H原子數大於4的氣態烴都符合.
②△V=0,m/4=1,m=4.、CH4,C2H4,C3H4,C4H4.
③△V<0,m/4<1,m<4.只有C2H2符合.
(4)根據含氧烴的衍生物完全燃燒消耗O2的物質的量與生成CO2的物質的量之比,可推導
有機物的可能結構
①若耗氧量與生成的CO2的物質的量相等時,有機物可表示為
②若耗氧量大於生成的CO2的物質的量時,有機物可表示為
③若耗氧量小於生成的CO2的物質的量時,有機物可表示為
(以上x、y、m、n均為正整數)
其他
最簡式相同的有機物
(1)CH:C2H2、C4H4(乙烯基乙炔)、C6H6(苯、稜晶烷、盆烯)、C8H8(立方烷、
苯乙烯)
2)CH2:烯烴和環烯烴
(3)CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖
(4)CnH2nO:飽和一元醛(或飽和一元酮)與二倍於其碳原子數的飽和一元羧酸
或酯.如:乙醛(C2H4O)與丁酸及異構體(C4H8O2)
(5)炔烴(或二烯烴)與三倍於其碳原子數的苯及苯的同系物.如丙炔(C3H4)與丙苯(C9H12)
高二化學知識點總結 篇11
1、功能高分子材料:功能高分子材料是指既有傳統高分子材料的機械效能,又有某些特殊功能的高分子材料。
2、合成功能高分子材料研究的問題
⑴高分子結構與功能之間有什麼關係?
⑵高分子應具有什麼樣的主鏈?應該帶有哪種功能基?
⑶是帶功能基的單體合成?還是先合成高分子鏈,後引入功能基?
如高吸水性材料的合成研究啟示:人們從棉花、紙張等纖維素產品具有吸水性中得到啟示:它是一類分子鏈上帶有許多親水原子團——羥基的高聚物。
合成方法:
⑴天然吸水材料澱粉、纖維素進行改性,在它們的高分子鏈上再接上含強吸水性原子團的支鏈,提高它們的吸水能力。如將澱粉與丙烯酸鈉一定條件下共聚並與交聯劑反應,生成具有網狀結構的澱粉——聚丙烯酸鈉接枝共聚物高吸水性樹脂。
⑵帶有強吸水性原子團的化合物為單體進行合成。如丙烯酸鈉加少量交聯劑聚合,得到具有網狀結構的聚丙烯酸鈉高吸水性樹脂。
3、問題:學與問中的問題彙報:橡膠工業硫化交聯是為增加橡膠的強度;高吸水性樹脂交聯是為了使它既吸水又不溶於水。小結:高吸水性樹脂可以在乾旱地區用於農業、林業、植樹造林時抗
旱保水,改良土壤,改造沙漠。又如,嬰兒用的“尿不溼”可吸入其自身重量幾百倍的尿液而不滴不漏,可使嬰兒經常保持乾爽。可與學生共同做科學探究實驗。
3、應用廣泛的功能高分子材料
⑴高分子分離膜:①組成:具有特殊分離功能的高分子材料製成的薄膜。②特點:能夠讓某些物質有選擇地透過,而把另外一些物質分離掉。③應用:物質分離
⑵醫用高分子材料:①效能:優異的生物相溶性、親和性;很高的機械效能。②應用:
人造心臟矽橡膠、聚氨酯橡膠人造血管聚對苯二甲酸乙二酯人造氣管聚乙烯、有機矽橡膠人造腎醋酸纖維、聚酯纖維人造鼻聚乙烯有機矽橡膠人造骨、關節聚甲基丙烯酸甲酯人造肌肉矽橡膠和絛綸織物人造皮膚矽橡膠、聚多肽人造角膜、肝臟,人工紅血球、人工血漿、食道、尿道、腹膜
高二化學知識點總結 篇12
1,有機物的分類(主要是特殊的官能團,如雙鍵,三鍵,羥基(與烷基直接連的為醇羥基,與苯環直接連的是芬羥基),醛基,羧基,脂基);
2同分異構體的書寫(不包括映象異構),一般指碳鏈異構,官能團異構;
3特殊反應,指的是特殊官能團的特殊反應(烷烴,烯烴,醇的轉化;以及純的逐級氧化(條件),酯化反應,以及脂的在酸性鹼性條件下的水解產物等);
4特徵反應,用於物質的分離鑑別(如使溴水褪色的物質,銀鏡反應,醛與氯化銅的反應等,還有就是無機試劑的一些);
5掌握乙烯,1,3--丁二烯,2-氯-1,3-丁二烯的聚合方程式的書寫;
6會使用質譜儀,核磁共振氫譜的相關資料確定物質的化學式;
7會根據反應條件確定反應物的大致組成,會逆合成分析法分析有機題;
8瞭解脂類,糖類,蛋白質的相關物理化學性質;
9,物質的分離與鑑定,一般知道溴水,高錳酸鉀,碳酸鈉,四氯化碳等;
10,有機實驗製取,收集裝置。甲烷,乙烯,乙酸乙酯,乙醇的製取以及注意事項。排水法,向下排空氣法,向上排空氣法收集氣體適用的情況,分液法制取液體。還有就是分液,蒸餾,過濾的裝置及注意事項
高二化學知識點總結 篇13
1、中和熱概念:在稀溶液中,酸跟鹼發生中和反應而生成1molH2O,這時的反應熱叫中和熱。
2、強酸與強鹼的中和反應其實質是H+和OH—反應,其熱化學方程式為:
H+(aq)+OH—(aq)=H2O(l)ΔH=—57、3kJ/mol
3、弱酸或弱鹼電離要吸收熱量,所以它們參加中和反應時的中和熱小於57、3kJ/mol。
4、蓋斯定律內容:化學反應的反應熱只與反應的始態(各反應物)和終態(各生成物)有關,而與具體反應進行的途徑無關,如果一個反應可以分幾步進行,則各分步反應的反應熱之和與該反應一步完成的反應熱是相同的。
5、燃燒熱概念:25℃,101kPa時,1mol純物質完全燃燒生成穩定的化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。
注意以下幾點:
①研究條件:101kPa
②反應程度:完全燃燒,產物是穩定的氧化物。
③燃燒物的物質的量:1mol
④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)
高二化學知識點總結 篇14
1、組成元素、氨基酸的結構通式、氨基酸的種類取決於R基.
2、構成蛋白質的氨基酸種類20多種.
3、氨基酸脫水縮合形成蛋白質:肽鍵的書寫方式.
有幾個氨基酸就叫幾肽.
肽鍵的數目=失去的水=氨基酸數目-肽鏈條數(鏈狀多肽)
環狀多肽肽鍵數=氨基酸數=失去的水
分之質量的相對計算:蛋白質的分子量=氨基酸的平均分子量氨基酸數-18(氨基酸-肽鏈條數)
4、蛋白質種類多樣性的原因:
氨基酸的種類、數目、排序以及蛋白質的空間結構不同.核酸分為核糖核酸RNA和脫氧核糖酸DNA,核酸的基本單位是核苷酸,每條核苷酸是由一分子含氮鹼基,一分子磷酸,一分子五碳糖,RNA是由鹼基(A、G、C、U),磷酸,核糖組成,DNA是由鹼基(A、G、C、T),磷酸和脫氧核糖組成
追答:
核苷酸是核酸的基本組成單位,核酸分為脫氧核糖核酸(DNA)和核糖核酸(RNA)所以核苷酸又分為脫氧核糖核苷酸(DNA基本組成單位)和核糖核苷酸(RNA基本組成單位)所謂的鹼基(一般叫含氮的鹼基)有6種{A(腺嘌呤)、C(胞嘧啶)、G(鳥嘌呤)、T(胸腺嘧啶)、U(尿嘧啶)}。組成DNA的鹼基有ACGT組成RNA的鹼基有ACGUT是DNA所特有的,U是RNA所特有的。兩者共有的有ACG。