高一數學必修2直線與方程知識點總結

高一數學必修2直線與方程知識點總結

  導語:聰明出於勤奮,天才在於積累。我們要振作精神,下苦功學習。下面由小編為您整理出的高一數學必修2直線與方程知識點總結的相關內容,一起來看看吧。

  高一數學必修2直線與方程知識點總結

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0180

  (2)直線的斜率

  ①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

  當 時, ; 當 時, ; 當 時, 不存在。

  ②過兩點的直線的斜率公式:

  注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90

  (2)k與P1、P2的順序無關;(3)以後求斜率可不透過傾斜角而由直線上兩點的座標直接求得;

  (4)求直線的傾斜角可由直線上兩點的座標先求斜率得到。

  (3)直線方程

  ①點斜式: 直線斜率k,且過點

  注意:當直線的斜率為0時,k=0,直線的方程是y=y1。

  當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫座標都等於x1,所以它的方程是x=x1。

  ②斜截式: ,直線斜率為k,直線在y軸上的截距為b

  ③兩點式: ( )直線兩點 ,

  ④截矩式:

  其中直線 與 軸交於點 ,與 軸交於點 ,即 與 軸、 軸的截距分別為 。

  ⑤一般式: (A,B不全為0)

  注意:各式的適用範圍 特殊的方程如:

  平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);

  (5)直線系方程:即具有某一共同性質的直線

  (一)平行直線系

  平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)

  (二)垂直直線系

  垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系: ,直線過定點 ;

  (ⅱ)過兩條直線 , 的交點的直線系方程為

  ( 為引數),其中直線 不在直線系中。

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

  (7)兩條直線的交點

  相交

  交點座標即方程組 的一組解。

  方程組無解 ; 方程組有無數解 與 重合

  (8)兩點間距離公式:設 是平面直角座標系中的兩個點,

  則

  (9)點到直線距離公式:一點 到直線 的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉化為點到直線的距離進行求解。

  高一數學必修2直線與方程知識點總結

  1、柱、錐、臺、球的結構特徵

  (1)稜柱:

  定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

  表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

  幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側稜平行且相等;平行於底面的截面是與底面全等的多邊形。

  (2)稜錐

  定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

  表示:用各頂點字母,如五稜錐

  幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

  (3)稜臺:

  定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分

  分類:以底面多邊形的邊數作為分類的標準分為三稜態、四稜臺、五稜臺等

  表示:用各頂點字母,如五稜臺

  幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側稜交於原稜錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

  幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一週所成的曲面所圍成的幾何體

  幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一週形成的幾何體

  幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

  2、空間幾何體的三檢視

  定義三檢視:正檢視(光線從幾何體的前面向後面正投影);側檢視(從左向右)、俯檢視(從上向下)

  注:正檢視反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

  俯檢視反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

  側檢視反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的'線段仍然與y平行,長度為原來的一半。

  兩個平面的位置關係:

  (1)兩個平面互相平行的定義:空間兩平面沒有公共點

  (2)兩個平面的位置關係:

  兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

  a、平行

  兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。

  兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。

  b、相交

  二面角

  (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

  (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]

  (3)二面角的稜:這一條直線叫做二面角的稜。

  (4)二面角的面:這兩個半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的稜上任意一點為端點,在兩個面內分別作垂直於稜的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  esp.兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

  兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直

  兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。

  稜錐

  稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐

  稜錐的的性質:

  (1)側稜交於一點。側面都是三角形

  (2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方

  正稜錐

  正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。

  正稜錐的性質:

  (1)各側稜交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。

  (3)多個特殊的直角三角形

  esp:

  a、相鄰兩側稜互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

最近訪問