行星運動定律

行星運動定律

  行星,通常指自身不發光,環繞著恆星運轉的天體。其公轉方向常與所繞恆星的自轉方向相同。下面是小編為大家整理的行星運動定律,僅供參考,歡迎閱讀。

  行星運動定律是指行星在宇宙空間繞太陽公轉所遵循的定律。由於是德國天文學家開普勒根據丹麥天文學家第谷·布拉赫等人的觀測資料和星表,透過他本人的觀測和分析後,於1609~1619年先後早歸納提出的,故行星運動定律即指開普勒三定律,被稱為“星子之王”的第谷·布拉赫在天體觀測方面獲得不少成就,死後留下20多年的觀測資料和一份精密星表。他的助手開普勒利用了這些觀測資料和星表,進行新星表編制。然而工作伊始便遇到了困難,按照正圓軌道來編制火星執行表一直行不通,火星這個“狡猾傢伙”總不聽指揮,老愛越軌。經過一次次分析計算,開普勒發現,如果火星軌道不是正圓,而是橢圓,那麼矛盾不就煙消雲散了嗎。經過長期細緻而複雜計算以後,他終於發現:行星在透過太陽的平面內沿橢圓軌道執行,太陽位於橢圓的一個焦點上。這就是行星運動第一定律,又叫“軌道定律”。

  當開普勒繼續研究時,“詭譎多端”的火星又將他騙了。原來,開普勒和前人都把行星運動當作等速來研究的。他按照這一方法苦苦計算了1年,卻仍得不到結果。後來他發現,在橢圓軌道上執行的行星速度不是常數,而是在相等時間內,行星與太陽的聯線所掃過的面積相等。這就是行星運動第二定律,又叫“面積定律”。

  開普勒又經過9年努力,找到了行星運動第三定律:太陽系內所有行星公轉週期的平方同行星軌道半長徑的立方之比為一常數,這一定律也叫“調和定律”。

  拓展閱讀

  行星運動定律由來

  開普勒第三定律也叫行星運動定律。開普勒第三定律的常見表述是:繞以太陽為焦點的橢圓軌道執行的所有行星,其各自橢圓軌道半長軸的立方與週期的平方之比是一個常量。

  德國天文學家約翰尼斯·開普勒根據丹麥天文學家第谷·布拉赫等人的觀測資料和星表,透過開普勒本人的觀測和分析後,於1609年在他出版的《新天文學》上發表了關於行星運動的前兩條定律,又於1618年,在《宇宙諧和論》提出了第三條定律。

  開普勒第三定律為經典力學的建立、牛頓的萬有引力定律的'發現,都作出重要的提示。

  發展歷史

  十七世紀初,開普勒根據前人第谷·布拉赫的觀測資料,總結出太陽系行星執行規律,並提出行星運動三大定律。這三大定律分別涉及太陽系行星的軌道形狀、執行速度以及執行週期,對行星運動的軌道規律進行了說明。

  1687年,《自然哲學的科學原理》出版。牛頓提出了三大運動定律和萬有引力定律。[1]

  定律內容

  1. 所有的行星圍繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個焦點上。

  2. 對每一個行星而言,太陽行星的連線在相同時間內掃過的面積相等。

  3. 所有行星的軌道的半長軸的三次方跟公轉週期的二次方的比值都相等。其表示式為:a/T=k,其中a是橢圓的軌道的半長軸,T是行星繞太陽公轉的週期,k是一個與行星無關的常量。

最近訪問