行列式運演算法則
行列式運演算法則
1、三角形行列式的值,等於對角線元素的乘積。計算時,一般需要多次運算來把行列式轉換為上三角型或下三角型。
2、交換行列式中的兩行(列),行列式變號。
3、行列式中某行(列)的公因子,可以提出放到行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不變,常用於消去某些元素。
5、若行列式中,兩行(列)完全一樣,則行列式為0;可以推論,如果兩行(列)成比例,行列式為0。
6、行列式展開:行列式的值,等於其中某一行(列)的每個元素與其代數餘子式乘積的和;但若是另一行(列)的元素與本行(列)的代數餘子式乘積求和,則其和為0。
7、在求解代數餘子式相關問題時,可以對行列式進行值替代。
8、克拉默法則:利用線性方程組的係數行列式求解方程。
9、齊次線性方程組:線上性方程組等式右側的常數項全部為0時,該方程組稱為齊次線性方程組,否則為非齊次線性方程組。齊次線性方程組一定有零解,但不一定有非零解。當D=0時,有非零解;當D!=0時,方程組無非零解。
行列式性質
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的`第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
④行列式A中兩行(或列)互換,其結果等於-A。
⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。