指數對數函式練習題
指數對數函式練習題
一、選擇題(12*5分)
1.( )4( )4等於( )
(A)a16 (B)a8 (C)a4 (D)a2
2.函式f(x)=(a2-1)x在R上是減函式,則a的取值範圍是( )
(A) (B) (C)a (D)1
3.下列函式式中,滿足f(x+1)= f(x)的是( )
(A) (x+1) (B)x+ (C)2x (D)2-x
4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b
中恆成立的有( )
(A)1個 (B)2個 (C)3個 (D)4個
5.函式y= 的值域是( )
(A)(- ) (B)(- 0) (0,+ )
(C)(-1,+ ) (D)(- ,-1) (0,+ )
6.下列函式中,值域為R+的是( )
(A)y=5 (B)y=( )1-x
(C)y= (D)y=
7.下列關係中正確的是( )
(A)( ) ( ) ( ) (B)( ) ( ) ( )
(C)( ) ( ) ( ) (D)( ) ( ) ( )
8.若函式y=32x-1的反函式的影象經過P點,則P點座標是( )
(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)
9.函式f(x)=3x+5,則f-1(x)的定義域是( )
(A)(0,+ ) (B)(5,+ )
(C)(6,+ ) (D)(- ,+ )
10.已知函式f(x)=ax+k,它的`影象經過點(1,7),又知其反函式的影象經過點(4,0),則函式f(x)的表示式是( )
(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3
11.已知01,b-1,則函式y=ax+b的影象必定不經過( )
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
12.一批裝置價值a萬元,由於使用磨損,每年比上一年價值降低b%,則n年後這批裝置的價值為( )
(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n
答題卡
題號 1 2 3 4 5 6 7 8 9 10 11 12
答案
二、填空題(4*4分)
13.若a a ,則a的取值範圍是 。
14.若10x=3,10y=4,則10x-y= 。
15.化簡= 。
16.函式y=3 的單調遞減區間是 。
三、解答題
17.(1)計算: (2)化簡:
18.(12分)若 ,求 的值.
19.(12分)設01,解關於x的不等式a a .
20.(12分)已知x [-3,2],求f(x)= 的最小值與最大值。
21.(12分)已知函式y=( ) ,求其單調區間及值域。
22.(14分)若函式 的值域為 ,試確定 的取值範圍。
參考答案
一、 選擇題
題號 1 2 3 4 5 6 7 8 9 10
答案 A C D D D B C A D B
題號 11 12 13 14 15 16 17 18 19 20
答案 C D C B A D A A A D
二、填空題
1.01 2. 3.1
4.(- ,0) (0,1) (1,+ ) ,聯立解得x 0,且x 1。
5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U為減函式,( )9 y 39。 6。D、C、B、A。
7.(0,+ )
令y=3U,U=2-3x2, ∵y=3U為增函式,y=3 的單調遞減區間為[0,+ )。
8.0 f(125)=f(53)=f(522-1)=2-2=0。
9. 或3。
Y=m2x+2mx-1=(mx+1)2-2, ∵它在區間[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。
10.2
11.∵ g(x)是一次函式,可設g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F( )=2, , k=- ,b= ,f(x)=2-
三、解答題
1.∵02, y=ax在(- ,+ )上為減函式,∵ a a , 2x2-3x+1x2+2x-5,解得23,
2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01
3.f(x)= , ∵x [-3,2],.則當2-x= ,即x=1時,f(x)有最小值 ;當2-x=8,即x=-3時,f(x)有最大值57。
4.要使f(x)為奇函式,∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。
5.令y=( )U,U=x2+2x+5,則y是關於U的減函式,而U是(- ,-1)上的減函式,[-1,+ ]上的增函式, y=( ) 在(- ,-1)上是增函式,而在[-1,+ ]上是減函式,又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域為(0,( )4)]。
6.Y=4x-3 ,依題意有
即 , 2
由函式y=2x的單調性可得x 。
7.(2x)2+a(2x)+a+1=0有實根,∵ 2x0,相當於t2+at+a+1=0有正根,
則
8.(1)∵定義域為x ,且f(-x)= 是奇函式;
(2)f(x)= 即f(x)的值域為(-1,1);
(3)設x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大於零,且a a ) f(x)是R上的增函式。