《乘法運算定律 》 教學設計

《乘法運算定律 》 教學設計

  教學目標:

  知識目標:透過新舊知識的溝通,觀察、比較、抽象、概括出乘法分配律;初步理解和掌握它的結構特徵;理解並運用乘法分配律進行簡算,並能正確計算。

  能力目標:滲透從特殊到一般,再由一般到特殊這種認識事物的方法。培養學生觀察、比較、抽象、概括等能力。培養學生的數感和符號感。

  情感目標:讓孩子們自己生成“用符號記錄整理的方法”,體驗學習的快樂。

  教學重點:引導學生透過觀察、比較、抽象、概括出乘法分配律。

  教學難點:應用乘法分配律解決實際問題。

  教學工具

  課件

  教學過程

  (一)生活引入,感知規律

  1.在家裡,你最喜歡誰?我也作了一個調查,咱們班很多同學是爸爸和媽媽很早起來為你準備早點、接送上學,輔導作業。

  2.爸爸和媽媽都對我們那麼好,我們可以自豪的說“爸爸和媽媽都愛我”。

  3.爸爸和媽媽都愛我,這句話還可以怎樣說?

  4.小結:同樣一句話可以有不同的說法。生活中的這種現象在我們數學中是怎樣的呢,今天我們就一起來探索數學中的規律。

  (二)開放探究,建構規律

  1.情境引入

  講本學期開學,學校要為一、二、三年級更換桌椅情況:

  (課件播放),提出問題,引發學生思考:

  (1)請仔細觀察大螢幕:

  學校為一年級更換3套桌椅共需要多少錢?

  學校為二年級更換5套桌椅共需要多少錢?

  學校為三年級更換6套桌椅共需要多少錢?

  (2)請同桌兩個同學選一個問題在練習紙上用兩種方法解答?

  (3)說說你的解題方法?你的算式表示什麼意思?另外一種方法呢?解釋一下。

  (4)誰願意接著彙報?

  2.第一次發現

  (1)仔細觀察這三組算式,你能發現什麼嗎?可以與同桌討論討論。

  小結:每一組算式的結果相等。

  (2)我把這兩個算式用等號來連線,行嗎?

  板書:(50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  3.第二次發現

  (1)再觀察這三組算式,還有什麼發現嗎?

  (2)同學們,你們的發現是不是隻是一種巧合,一種猜想呀?能不能舉出一些這樣的例子對你的猜想進行驗證呢?

  (3)每人舉出一個例子,寫在紙上,然後請同桌幫助驗證

  彙報交流:像這樣的例子還能舉出一些嗎?舉的`完嗎?

  4.歸納總結:

  (1)你們發現的這個規律叫做乘法分配律。同桌說說什麼叫做乘法分配律?

  (2)請看大螢幕,你們的意思是這樣嗎?小聲讀讀。

  (3)有什麼不懂的詞嗎?

  5.個性化理解

  (1)你能用比較喜歡的形式來表達上面的這些等式嗎?比如用字母,圖形等。

  根據學生回答教師板書:

  (甲+乙)×丙=甲×丙+乙×丙

  (a+b)×c=a×c+b×c

  (2)這些等式都表示什麼意思呢?(同桌討論,然後彙報)

  (3)對於乘法分配律用字母表示感覺怎麼樣?

  (三)啟用聯絡、應用規律。

  1.請你把相等的兩個算式連線。

  (8+13)×4 41×(3+27)

  3×(21+6) 7×5 +8

  41×3 +41×27 3×21 +3×6

  7×(5+8) 8×4 +13×4

  (1)你為什麼連得這麼快?是計算了嗎?

  (2)這兩個算式之間為什麼不連了?能用乘法分配律的內容來解釋嗎?

  2.根據乘法分配律填空:

  (83+17)×3=□×□○□×□

  10×25+4×25=(□○□)×□

  (1)誰願意展示一下你填寫的。有不同意見嗎?

  (2)分別說說轉化以後的算式和原來的算式比,哪一個讓我們計算起來感覺比較簡便了?為什麼?

  (3)小結:學習了乘法分配律可以靈活選擇演算法,怎樣計算簡便就怎樣算。

  3.聯絡舊知、同已有知識建立聯絡。

  談話:“乘法分配律”在過去學習中用過嗎?咱們回顧一下。

  現在我們每天都在練乘法豎式計算,看大螢幕。乘法豎式中也運用了乘法分配律?你們看出來了嗎?

  (四)課堂小結:

  今天,學習了乘法分配律,你有什麼想法?

  (五)板書設計:

  乘法分配律

  (50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  (a+b)×c = a×c+b×c

最近訪問