《乘法運算定律 》 教學設計
《乘法運算定律 》 教學設計
教學目標:
知識目標:透過新舊知識的溝通,觀察、比較、抽象、概括出乘法分配律;初步理解和掌握它的結構特徵;理解並運用乘法分配律進行簡算,並能正確計算。
能力目標:滲透從特殊到一般,再由一般到特殊這種認識事物的方法。培養學生觀察、比較、抽象、概括等能力。培養學生的數感和符號感。
情感目標:讓孩子們自己生成“用符號記錄整理的方法”,體驗學習的快樂。
教學重點:引導學生透過觀察、比較、抽象、概括出乘法分配律。
教學難點:應用乘法分配律解決實際問題。
教學工具
課件
教學過程
(一)生活引入,感知規律
1.在家裡,你最喜歡誰?我也作了一個調查,咱們班很多同學是爸爸和媽媽很早起來為你準備早點、接送上學,輔導作業。
2.爸爸和媽媽都對我們那麼好,我們可以自豪的說“爸爸和媽媽都愛我”。
3.爸爸和媽媽都愛我,這句話還可以怎樣說?
4.小結:同樣一句話可以有不同的說法。生活中的這種現象在我們數學中是怎樣的呢,今天我們就一起來探索數學中的規律。
(二)開放探究,建構規律
1.情境引入
講本學期開學,學校要為一、二、三年級更換桌椅情況:
(課件播放),提出問題,引發學生思考:
(1)請仔細觀察大螢幕:
學校為一年級更換3套桌椅共需要多少錢?
學校為二年級更換5套桌椅共需要多少錢?
學校為三年級更換6套桌椅共需要多少錢?
(2)請同桌兩個同學選一個問題在練習紙上用兩種方法解答?
(3)說說你的解題方法?你的算式表示什麼意思?另外一種方法呢?解釋一下。
(4)誰願意接著彙報?
2.第一次發現
(1)仔細觀察這三組算式,你能發現什麼嗎?可以與同桌討論討論。
小結:每一組算式的結果相等。
(2)我把這兩個算式用等號來連線,行嗎?
板書:(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
3.第二次發現
(1)再觀察這三組算式,還有什麼發現嗎?
(2)同學們,你們的發現是不是隻是一種巧合,一種猜想呀?能不能舉出一些這樣的例子對你的猜想進行驗證呢?
(3)每人舉出一個例子,寫在紙上,然後請同桌幫助驗證
彙報交流:像這樣的例子還能舉出一些嗎?舉的`完嗎?
4.歸納總結:
(1)你們發現的這個規律叫做乘法分配律。同桌說說什麼叫做乘法分配律?
(2)請看大螢幕,你們的意思是這樣嗎?小聲讀讀。
(3)有什麼不懂的詞嗎?
5.個性化理解
(1)你能用比較喜歡的形式來表達上面的這些等式嗎?比如用字母,圖形等。
根據學生回答教師板書:
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)這些等式都表示什麼意思呢?(同桌討論,然後彙報)
(3)對於乘法分配律用字母表示感覺怎麼樣?
(三)啟用聯絡、應用規律。
1.請你把相等的兩個算式連線。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×4
(1)你為什麼連得這麼快?是計算了嗎?
(2)這兩個算式之間為什麼不連了?能用乘法分配律的內容來解釋嗎?
2.根據乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)誰願意展示一下你填寫的。有不同意見嗎?
(2)分別說說轉化以後的算式和原來的算式比,哪一個讓我們計算起來感覺比較簡便了?為什麼?
(3)小結:學習了乘法分配律可以靈活選擇演算法,怎樣計算簡便就怎樣算。
3.聯絡舊知、同已有知識建立聯絡。
談話:“乘法分配律”在過去學習中用過嗎?咱們回顧一下。
現在我們每天都在練乘法豎式計算,看大螢幕。乘法豎式中也運用了乘法分配律?你們看出來了嗎?
(四)課堂小結:
今天,學習了乘法分配律,你有什麼想法?
(五)板書設計:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
(a+b)×c = a×c+b×c