北師大版正比例教學設計(通用6篇)

北師大版正比例教學設計(通用6篇)

  作為一名優秀的教育工作者,總不可避免地需要編寫教學設計,教學設計是把教學原理轉化為教學材料和教學活動的計劃。我們應該怎麼寫教學設計呢?以下是小編精心整理的北師大版正比例教學設計(通用6篇),僅供參考,大家一起來看看吧。

  正比例教學設計1

  教學內容:

  教科書第62—63頁的例1、“試一試”和“練一練”,第66頁練習十三的第1—3題。

  教學目標:

  1、使學生經歷從具體例項中認識成正比例的量的過程,初步理解正比例的意義,學會根據正比例的意義判斷兩種相關聯的量是不是成正比例。

  2、使學生在認識成正比例的量的過程中,初步體會數量之間相依互變的關係,感受有效表示數量關係及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。

  3、使學生進一步體會數學與日常生活的密切聯絡,增強從生活現象中探索數學知識和規律的意識。

  教學重難點:

  理解相關聯的兩個量及正比例的意義,並能正確判斷兩種量是否成正比例

  學情分析

  1.學生在學習本單元之前已經學習了比和比例的有關知識,會解決按比例分配的簡單數學問題。

  2.有一些樸素的正、反比例概念。學生在中已經積累了一些這方面的經驗,比如坐車時間越長,行走的距離就越遠等。

  多媒體運用:ppt課件

  教學過程:

  一、教學例1

  1、談話引出例1的表格,讓學生說一說表中列出了哪兩種量。

  2、引導學生觀察表中的資料,說一說這兩種量的數值分別是怎樣變化的。

  可先讓同桌相互說一說,再組織全班交流。透過交流,使學生初步感知兩種量的變化情況:行駛的時間擴大,路程也隨著擴大;行駛的時間縮小,路程也隨著縮小。

  小結:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。

  3、引導學生進一步觀察表中的資料,找一找這兩種量的變化的規律,啟發學生從“變化”中去尋找“不變”。

  學生可能會從不同的角度去尋找規律。

  教師可根據交流的實際情況,及時引導學生透過計算確認這一規律,並有意識地從後一種角度突出這一規律。

  如果學生髮現不了上述規律,可引導學生寫出幾組相對應的路程與時間的比,並求出比值。

  4、根據上面發現的規律,進一步啟發學生思考:這個比值表示什麼?上面的規律能不能用一個式子來表示?

  根據學生的回答,教師板書關係式:路程時間=速度(一定)

  5、教師對兩種量之間的關係作具體說明:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。當路程和對應時間的比的比值總是一定,也就是速度一定時,行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。

  (板書:路程和時間成正比例)

  二、教學“試一試”

  1、要求學生根據表中的已知條件先把表格填寫完整。

  2、根據表中的資料,依次討論表格下面的四個問題,並仿照例1作適當的板書。

  3、讓學生根據板書完整地說一說鉛筆的總價和數量成什麼關係。

  三、抽象表達正比例的意義

  1、引導學生觀察上面的兩個例子,說說它們有什麼共同點。

  2、啟發學生思考:如果用字母x和y分別表示兩種相關聯的量,用k表示它們的比值,正比例關係可以用怎樣的式子來表示?

  根據學生的回答,板書關係式。

  四、鞏固練習

  1、完成第63頁的“練一練”。

  先讓學生獨立思考並作出判斷,再要求說明判斷理由。

  2、做練習十三第1~3題。

  第1題讓學生按題目要求先各自算一算、想一想,再組織討論和交流。

  第2題先讓學生獨立進行判斷,再指名說判斷的理由。

  第3題要先讓學生說說題目要求我們把已知的正方形按怎樣的比放大,放大後正方形的邊長各是幾釐米,再讓學生在圖上畫一畫。

  填好表格後,組織學生討論,明確:只有當兩種相關聯的量的比值一定時,它們才能成正比例。

  五、全課小結

  這節課你學會了什麼?透過這節課的學習,你還有哪些收穫?

  正比例教學設計2

  教學內容

  教科書第54頁例3,練習十二5,6,7題。

  教學目標

  1.進一步理解正比例的意義,會運用正比例知識解決簡單的實際問題。

  2.透過運用正比例解決實際問題的活動,讓學生體驗數學的應用價值,培養學生解決問題的能力。

  3.滲透函式思想,使學生受到辯證唯物主義觀念的啟蒙教育。

  教學重、難點

  運用正比例知識解決簡單的實際問題。

  教學準備

  教具:多媒體課件。

  學具:作業本,數學書。

  教學過程

  一、複習引入

  1.判斷下面各題中的兩種量是不是成正比例?為什麼?

  (1)飛機飛行的`速度一定,飛行的時間和航程。

  (2)梯形的上底和下底不變,梯形的面積和高。

  (3)一個加數一定,和與另一個加數。

  (4)如果y=3x,y和x。

  2.揭示課題

  教師:我們已經學過正比例的一些知識,應用這些知識可以解決生活中的實際問題。這節課,我們就來學習"正比例的應用"。

  二、合作交流,探索新知

  1.用課件出示例3

  教師:這幅圖告訴我們一個什麼事情?需要解決什麼問題?

  教師:先獨立思考,再小組合作交流,看能想出哪些方法解決這個問題。

  2.全班交流解答方法

  指導學生思考出:

  (1)195÷5×8=312(元),先求每份報紙的單價,再求8份報紙的總價,就是李老師應付給郵局的錢。

  (2)195÷(5÷8)=312(元),先求5份報紙是8份報紙的幾分之幾,即195元佔李老師所付錢的幾分之幾,最後求出李老師所付的錢。

  (3)195×(8÷5)=312(元),先求出8份報紙是5份報紙的幾倍,再把195元擴大相同的倍數後,結果就是李老師所付的錢。

  3.嘗試用正比例知識解答

  如果有學生想出用正比例方法解答,教師可以直接問:"你為什麼要這樣解?"讓學生說出解題理由後再歸納其方法;如果學生沒想到用正比例知識解答,教師可作如下引導。

  教師:除了這些解題方法外,我們還會用正比例方法解答嗎?請同學們用學過的有關正比例的知識思考:

  (1)題中有哪兩種相關聯的量?

  (2)題中什麼量是不變的?一定的?

  (3)題中這兩種相關聯的量是什麼關係?

  引導學生分析出:題中有所訂報紙份數和所付總錢數這兩個相關聯的量,它們的關係是所付總錢數÷所訂報紙份數=每份報紙單價,而題中的每份報紙單價一定,因此所付總錢數和所訂報紙份數成正比例關係。

  隨學生的回答,教師可同步板書:

  教師:運用我們前面所學的正比例知識,同學們會解答嗎?準備怎樣列比例式?

  引導學生討論後回答,先要把李老師應付的錢數設為x元,再根據所付總錢數所訂份數=每份報紙單價的關係式,列式為1955=x8。

  教師:同學們會計算嗎?把這個比例式計算出來。

  學生解答。

  教師:解答得對不對呢?你準備怎樣驗算?

  學生討論驗算方法,教師引導:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它們的比值相等,與題意相符,所以所求的解是正確的。

  三、課堂活動

  1.出示教科書第49頁的例1圖和補充條件

  竹竿長(m)26…

  影子長(m)39…

  教師:在這個表中有哪兩種量?它們相關聯嗎?它們成什麼關係?你是根據什麼判斷的?

  教師出示問題:小明和小剛測量出旗杆影子長21m,請問旗杆有多高呢?根據剛才我們判斷的比例關係,你能列出等式嗎?

  學生獨立思考解答,討論交流。

  2.小結方法

  教師:你覺得我們在用正比例知識解決上面兩個問題的時候,步驟是怎樣的?(初步歸納,不求學生強記,只求理解。)

  (1)設所求問題為x。

  (2)判斷題中的兩個相關聯的量是否成正比例關係。

  (3)列出比例式。

  (4)解比例,驗算,寫答語。

  四、練習應用

  完成練習十二的5,6,7題。

  五、課堂小結

  這節課我們學習了什麼知識?你有什麼收穫。

  正比例教學設計3

  教學要求:

  1.使學生認識正比例關係的意義,理解、掌握成正比例量的變化規律及其特徵,能依據正比例的意義判斷兩種相關聯的.量成不成正比例關係。

  2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯量成不成正比例關係的方法,培養學生判斷、推理的能力。

  教學重點:

  認識正比例關係的意義。

  教學難點:

  掌握成正比例量的變化規律及其特徵。

  教學過程:

  一、複習鋪墊

  1.說出下列每組數量之間的關係。

  (1)速度時間路程

  (2)單價數量總價

  (3)工作效率工作時間工作總量

  2.引入新課。

  上面是已經學過的一些常見數量關係,每組數量中,數量之間是有聯絡的,存在著相依關係。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規律的,這節課開始,我們就來研究和認識這種變化規律。今天,先認識正比例關係的意義。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例l。讓學生計算,在課本上填表,並思考能發現什麼。指名口答,老師板書填表。讓學生觀察表裡兩種量變化的資料,思考:

  (1)表裡有哪兩種數量,這兩種數量是怎樣變化?

  (2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?

  (3)分別找出面積與款項對應的數,面積與寬的比各是幾比幾?比值各是多少?

  引導學生進行討論,得出:

  (1)表裡的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關聯的量,(板書:兩種相關聯的量)面積隨著寬(長)的變化而變化。

  (2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。

  (3)可以看出它們的變化規律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應數值比的比值都是5(2)。提問:這裡比值5(2)是什麼數量?誰能說出它的數量關係式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什麼意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

  2.教學例2。

  出示例2。要求學生按剛才學習例1的方法學習例2,然後把你學習中的發現綜合起來告訴大家。學生觀察思考後,指名回答。然後再提問:這兩種相關聯量的變化規律是什麼?你是怎樣發現的?你能用數量關係式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請大家比較例l和例2,你發現這兩個例題有什麼共同的地方?(①都有兩種相關聯的量;②都是一種量隨著另一種量變化;③兩種量裡對應數值的比的比值一定)

  (2)概括正比例關係的意義。

  像例l、例2裡這樣的兩種相關聯的量是怎樣的關係呢,請同學們看課本第95頁最後連個自然段。說明:根據剛才學習例1、例2時發現的規律,這裡有兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關係叫做正比例關係。追問;兩種相關聯量成不成正比例的關鍵是什麼?(比值是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的比值,那麼上面這種數量關係式可以怎樣寫呢?指出:這個式子表示兩種相關聯的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關係。所以,兩個量成正比例關係,我們就用式子=k(一定)來表示。

  4.教學例3學生看書自學,小組討論,集體交流。

  (1)數量與時間是不是兩種相關聯的量?

  (2)數量與時間有什麼關係?他們的比值是誰?比值是不是不變的?

  (3)判斷數量與時間是不是成正比例?

  5.完成97頁練一練。

  三、鞏固練習

  1.(1)提問:例l裡有哪兩種相關聯的量?這兩種量成正比例關係嗎,為什麼?例2裡的兩種量是不是成正比例的量?為什麼?提問:看兩種相關聯的量是不是成正比例,關鍵要看什麼?

  2.做練習十一第1題。

  讓學生讀題思考。指名依次口答題裡的問題。指出:根據上面所說的正比例的意義,要知道兩個量是不是成正比例關係,只要先看兩種量是不是相關聯的量,再看兩種量變化時比值是不是一定。如果兩種相關聯的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關係。

  3.下列題裡有哪兩種相關聯的量?這兩種量成不成正比例?為什麼?

  一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。

  四、課堂小結

  這節課學習了什麼內容?正比例關係的意義是什麼?用怎樣的式子表示y和x這兩種相關聯的量成正比例?判斷兩種相關聯的量是不是成正比例,關鍵看什麼?關鍵是列出關係式,看是不是比值一定。

  五、家庭作業

  練習十一第2~6題。

  正比例教學設計4

  教學目標:

  1、掌握用正比例的方法解答相關應用題;

  2、透過解答應用題使學生熟練地判斷兩種相關聯的量是否成正比例,從而加深對正比例意義的理解;

  3、培養學生分析問題、解決問題的能力;

  4、發展學生綜合運用知識解決簡單實際問題的能力。

  教學重點:掌握用正比例的方法解答應用題

  教學難點:能正確判斷兩種相關聯的量成什麼比例,正確列出比例式。

  教學過程:

  一、複習:出示課件

  二、談話匯入:

  1、在上新課之前,先考考大家我們的樓房有多麼高?

  2、怎樣測量它大概的高度呢?

  剛才同學們想出了很多的方法去測量大概高度。今天我們學習一種新的方法──正比例應用題,學完後,我們試著用這種方法去計算樓房的大概高度。看誰學得最棒。

  三、新課教學:

  先來研究這樣一個問題。

  1、出示例1課件

  一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時。甲乙兩地之間的公路長多少千米?

  2、分析解答應用題

  (1) 請一位同學讀一讀題目

  (2) 這道題要求什麼?已知什麼條件?

  (3) 能不能用以前學過的方法解答?

  (4) 讓學生自己解答,邊訂正邊板書:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激勵引新

  這兩種方法都合理,還可以有什麼方法解答呢?

  學生互議,師引導,我們已經學習了比例的知識,能不能用比例解答呢?

  四、探討新知

  1、提出問題

  師:請同學們結合課本上的例題,討論以下問題。

  (1) 題目中相關聯的兩種量是________和________。

  (2) ________一定,_________和_________成_______比例關係。

  (3) ______行駛的_____ 和 _____的 ________相等。

  2、學生自學例題後小組討論。

  3、組間交流:小組代表把討論結果在班內交流

  4、學生嘗試解答後評價(指名學生板演)

  5、怎樣檢驗?把檢驗過程寫出來。

  6、概括總結

  (1) 用比例解答應用題與用算術方法解答應用題教師這道題的解法,如果題目中沒有要求的,我們採取任何一種方法都可以,但如果題目要求用比例解的,就一定要用

  比例的方法解。

  (2) 明確解題步驟。(板)

  用比例方法解答應用題,具體步驟是怎樣的呢?請根據我們所做的例題歸納解題步驟。

  1.分析判斷

  2.找出列比例式所需的相等關係

  3.設未知數列等式

  4.求解

  5.檢驗寫答語

  五、練習提高

  1、 變式練習,出示課件

  (1)例題改編

  ① 如果把這道題的第三個和問題改成:“已知公路長350千米,需要行駛多少小時?”該怎樣解答?

  ② 讓學生解答改編後的應用題,集體訂正。

  ③ 小結 :比較一下改編後的題和例1有什麼聯絡和區別?

  例1的條件和問題以後,題中成正比例的關係仍沒變,解答的方法出沒有改變,只是要設需要行駛的小時數為x,列出的等式是:

  140/2=350/x

  (2)24頁做一做:讓學生直接用比例知識解答。做完後,請幾個同學說一說:你為什麼這樣列式?

  2、基本練習,出示課件

  3、實踐運用

  (1)彙報資料:剛才我們上課時提到怎樣測量和計算樓房的大概高度,課前我請幾位同學去測得一些資料。現在請這些同學跟我們彙報一下。

  (2)能用這些資料編一道正比例應用題嗎?

  (3)小組合作編題

  六、總結

  今天我們學習的是如何用正比例的方法解答以前學過的應用題。解答的步驟怎樣的呢?

  七、課後反思

  1、還有部分學生不理解正比例的意義

  2、不會判斷是不是成正比例的關係

  3、列出的比例式不是正比例的形式

  正比例教學設計5

  一、聯絡生活,複習引入

  (1)下面是居委會張阿姨負責的小區水費收繳情況,用這個表中的數能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

  住戶張家趙家

  水費(元)1520

  用水量(噸)68

  (2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數量呢?

  教師:這些數量之間藏著不少的知識,今天這節課我們就來研究這些數量間的一些規律和特徵。

  二、自主探索,學習新知

  1.教學例1

  用小黑板在剛才準備題的表格中增加幾列資料,變成下表。

  住戶張家趙家李家周家劉家吳家

  水費(元)1520352517.5

  用水量(噸)6814109

  教師:請同學們觀察這張表,先獨立思考後再討論、交流:從這張表中你發現了什麼規律?並根據這種規律幫助張阿姨把表格填寫完整。

  教師根據學生的回答將表格完善,並作必要的板書。

  教師:同學們發現表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關聯的。

  板書:相關聯

  教師:你們還發現哪些規律?

  學生在這裡主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據學生的回答板書出來,便於其他學生觀察:

  水費用水量=156=208=3514=……=2.5

  教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數。

  板書:水費用水量=每噸水單價(一定)

  2.教學“試一試”

  教師:我們再來研究一個問題。

  小黑板出示第52頁下面的“試一試”。

  學生先獨立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個表格中的資料嗎?

  教師根據學生的回答歸納如下:

  表中的路程和時間是相關聯的量,路程隨著時間的變化而變化。

  時間擴大若干倍,路程也擴大相同的倍數;時間縮小若干倍,路程縮小相同的倍數。

  路程與時間的比值是一定的,速度是每時80M,它們之間的關係可以寫成路程時間=速度(一定)

  3.教學“議一議”

  教師:我們研究了上面生活中的兩個問題,誰能發現它們之間的共同點呢?

  引導學生歸納出這兩個問題中都有相關聯的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數,所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關係叫做成正比例關係。

  4.教學課堂活動

  教師:請大家說一說生活中還有哪些是成正比例的量。

  (1)完成練習十二的第1題。

  教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關係嗎?為什麼?

  學生獨立思考,先小組內交流再集體交流。

  (2)完成練習十二的第2題。

  這節課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?

  正比例教學設計6

  教學內容:

  P62~P63頁的例1及相應的“試一試”“練一練”。完成練習十三第1~3題。

  教學目標:

  1.使學生經歷從具體例項中認識成正比例的量的過程,初步理解正比例的意義,學會根據正比例的意義判斷兩種相關聯的量是不是成正比例。

  2.讓學生在認識成正比例的量的過程中,初步體會數量之間相依互變的關係,感受有效表示數量關係及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。

  3.讓學生進一步體會數學和日常生活的密切聯絡,增強從生活現象中探索數學知識和規律的意識。

  教學重難點:

  重點:結合實際情境認識成正比例量的特點,加深對正比例量的理解。

  難點:能跟據正比例的意義判斷兩種相關聯的量是否成正比例。

  教學準備:

  課件

  課時安排:

  第一課時

  課前設計:

  一、匯入。

  談話:透過將近六年的數學學習,我們已經瞭解了一些數量之間的關係,例如行程問題中速度、時間、路程之間的關係,你知道這三個量之間的關係嗎?再如購物問題中單價、數量、總價之間的關係,你知道這三個量之間的關係嗎?這個單元我們要用一種新的觀點,更深入地研究數量之間的關係,什麼觀點呢?事物變化的觀點,讓一些量變起來,從變化中發現規律。

  二、教學例1。

  1.出示例1的表格。提問:表中列出了哪兩種量?(板書:時間和路程)觀察表中的資料,哪一種量的變化引起了另一種量的變化?你是怎麼看出來的?

  指名回答。

  談話:時間變化,路程也隨著變化,我們就說,路程和時間是兩種相關聯的量。(板書:路程和時間是兩種相關聯的量。)“關聯”是什麼意思?為什麼說路程和時間是兩種相關聯的量?

  2.我們已經知道路程和時間是兩種相關聯的量。還要進一步研究,這兩種量的變化有什麼規律?

  3.仔細觀察表中的資料,這兩種量在變化中有沒有什麼不變的規律呢?現在小組內討論,再在班內交流。(有的學生可能會發現兩種量中所對應的兩個數的比值不變)

  提問:觀察這些比值,你發現了什麼?這個比值80表示什麼?(速度)你能用一個式子來表示上面的規律嗎?根據學生回答,板書:=速度(一定)

  4.講述:透過觀察和計算,我們對路程和時間的關係有兩點發現:第一點路程和時間是兩種相關聯的量,也就是時間變化,路程也隨著變化;第二點路程和對應的時間的比的比值一定(也就是速度一定)。具備了這兩個條件,我們就可以得到結論:行駛的路程和時間成正比例;行駛的路程和時間成正比例的量。(板書:路程和時間成正比例,路程和時間是成正比例的量)

  5.談話:這就是這節課我們所學習的正比例。(板書課題)請閱讀課本第62頁的一段文字,各自默讀,邊讀邊畫。

  再指名讀。提問:你能讀懂嗎?

  在這題中,哪個量和哪個量是成正比例的量?同桌互相說一說為什麼時間和路程是成正比例的量,並在全班交流。

  三、教學“試一試”

  1.出示“試一試”,學生自由讀題。

  2.要求學生根據已知條件把表格填寫完整。

  3.學生根據表中資料,先嚐試獨立完成表格。下面的四個問題,然後和同桌交流。

  4.全班交流。板書:總價和數量是相關聯的量,=單價(一定),總價和數量成正比例。

  5.讓學生根據板書完整地說一說鉛筆的總價和數量成什麼關係。

  四、用含有字母的式子表示正比例關係。

  1.比較例題和“試一試”的相同點。

  提問:觀察上面的兩個例子,它們有什麼相同的地方呢?

  2.談話:如果用字母和分別表示兩種相關聯的量,用表示它們的比值,正比例關係可以用怎樣的式子來表示呢?

  談話:這是正比例關係式表示式,對這個式子要這樣理解:和表示兩種相關聯的量,比的比值一定,我們就說和成正比例。

  五、鞏固練習

  1.完成第63頁“練一練”。

  學生獨立思考並作出判斷,要用完整的語言說出判斷的理由。

  2.完成補充習題。

  一輛腳踏車在公路上行駛,行駛的時間和路程如下表。

  時間/時123456……

  路程/千米355060708590……

  這輛腳踏車行駛的時間和路程是相關聯的量嗎?成正比例嗎?為什麼?

  先獨立思考,再和同桌說一說。

  全班交流,並討論:成正比例的量必須符合哪些條件?

  3.完成練習十三第1題。

  (1)學生按題目要求嘗試獨立完成。

  (2)全班交流,重點讓學生說說為什麼碾米機的工作時間和碾米數量成正比例,引導學生完整地說出判斷的思考過程。

  4.完成練習十三第2題。

  (1)讓學生獨立判斷,並說明理由。

  (2)談話:如果去掉“同一時間”這個前提,物體的高度和影長還成正比例嗎?

  5.完成練習十三第3題。

  (1)說一說:將圖中的正方形按怎樣的比放大,放大後的正方形的邊長各是幾釐米?

  (2)畫一畫:在書上畫出放大後的圖形。

  (3)算一算:算出每個圖形的周長和麵積,並填在表中。

  (4)討論表格下面的兩個問題。談話:兩種量若要成正比例必須是相關聯的量,但相關聯的量不一定成正比例,只有當兩種相關聯的量的比值一定時,它們才成正比例。

  六、全課。

  提問:透過這節課的學習,你有什麼收穫?

  板書設計

  認識成正比例的量

  時間和路程路程和時間是兩種相關聯的量。

  =80=80=80……

  =速度(一定)

  路程和時間成正比例,路程和時間是成正比例的量。

  總價和數量是相關聯的量,=單價(一定),總價和數量成正比例

  =(一定)

最近訪問