人教版高一數學平面直角座標系的教學計劃
人教版高一數學平面直角座標系的教學計劃
平面上的直線就是由平面直角座標系中的一個二元一次方程所表示的圖形 。
教學目標
(1)掌握由一點和斜率匯出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,並能根據條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內在聯絡,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)透過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.
(5)透過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結構
由直線方程的概念和直線斜率的概念匯出直線方程的點斜式;由直線方程的點斜式分別匯出直線方程的斜截式和兩點式;再由兩點式匯出截距式;最後都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.
(2)重點、難點分析
①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以後學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是後面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響後繼知識的學習.
②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關係證明.
2.教法建議
(1)教材中求直線方程採取先特殊後一般的思路,特殊形式的方程幾何特徵明顯,但侷限性強;一般形式的方程無任何限制,但幾何特徵不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關係,為繼續學習曲線方程打下基礎.
直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點
(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特徵,引數的意義等,使學生明白為什麼要轉化,並加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的`要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中佔有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定係數法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與座標軸交點的相應座標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).
(6)本節中有不少與函式、不等式、三角函式有關的問題,是函式、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.
(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯絡實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.
(8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.