平面向量教學反思範文

平面向量教學反思範文

  身為一位到崗不久的教師,課堂教學是重要的任務之一,我們可以把教學過程中的感悟記錄在教學反思中,教學反思要怎麼寫呢?以下是小編為大家整理的平面向量教學反思範文,歡迎閱讀,希望大家能夠喜歡。

  平面向量教學反思1

  簡單回顧《平面向量的數量積》這節課,首先我透過力對物體所做的功的物理模型引入數量積這一概念的,之後剖析概念,透過小組討論,讓學生分析定義應注意的問題,特別強調數量積的結果不是一個向量,而是一個數量。透過練習,進一步熟悉鞏固向量的數量積的定義,這個小題目的是提醒學生要注意,兩個非零向量的夾角問題要透過平移使這兩個向量共起點。接下來,透過分析平面向量數量積的定義,體會平面向量的數量積的幾何意義,從而使學生從代數和幾何兩個方面對數量積的“質變”特徵有了更加充分的認識,而且為後面證明平面向量的數量積的分配律鋪墊。數量積的運算律是數量積概念的延伸,數量積的運算律則是透過和實數乘法相類比得到,這樣不僅使學生感到親切自然,同時也培養了學生由特殊到一般的思維品質和類比創新的意識。為了讓學生完成這個探究活動,我引導學生從平面向量的數量積的幾何意義入手問題,師生共同完成證明過程。透過這節課的教學,我感覺不足的地方有:

  (1)教師應該如何準確的提出問題

  在教學中,我提出問題,平面向量的數量積的定義中你認為應注意哪些問題?這個問題問的`不夠具體,學生不知道給如何回答。其實這個問題,我也曾考慮過該如何問,只是沒有找到更合適的提問方法,能力有待加強。

  (2)教師如何把握“收”與“放”的問題

  何時放手讓學生思考,何時教師引導學生,何時教師講授,這是個值得思考的問題。

  (3)教師要點撥到位

  在學生出現問題後,教師要及時點評加以總結,要重視思維的提升,提高學生的數學能力和素質。

  平面向量教學反思2

  它是溝通代數、幾何、三角函式的一種工具,有著極其豐富的實際背景.其教育價值主要體現在有助於學生體會數學與實際生活的聯絡,感受數學在解決實際問題中的作用,有助於學生認識數學內容之間的內在聯絡,體驗、領悟數學的創造性和普遍聯絡性,有助於學生髮展智力,提高運算、推理能力

  (1)應瞭解的內容:共線向量的概念,平面向量的基本定理,用平面向量的數量積處理有關長度、角度和垂直的問題。

  應理解的內容:向量的概念,兩個向量共線的充要條件,平面向量座標的概念。

  應掌握的內容:向量的幾何表示,向量的加法與減法,實數與向量的積,平面向量的座標運算,平面向量的數量積及幾何意義,向量垂直的條件。

  (2)注意處理好新舊思維矛盾

  學習向量運算與學習數的運算有類似之處:從學習順序上看,都是先定義運算,再研究運算性質;從學習內容來看,向量運算具有與數的運算類似的良好性質。當引入向量後,運算物件擴充了,不僅僅是數的運算了,向量運算是建立在新的運演算法則上,向量的運算與實數的運算不盡相同,向量不同於數量,它是一種新的量,關於數量的代數運算在向量範圍內不都適用,它有一套自己的運演算法則。但很多學生往往完全照搬數的運演算法則,而不注意向量運演算法則的特點,因此常常出錯。

  在教學中要注意新舊知識之間的矛盾衝突,及時讓學生加以辨別、總結,利於正確理解向量的實質。例如向量的加法與向量模的加法的區別,向量的數量積與實數積的區別,在座標表示中兩個向量共線與垂直的充要條件的區別等等。

  (3)注意數學思想方法的滲透

  在這一章中,從引言開始,就注意結合具體內容滲透數學思想方法。例如,從帆船在大海中航行時的位移,滲透數學建模的思想。透過介紹相等向量及有關作圖的訓練,滲透平移變換的思想。

  由於向量具有兩個明顯特點——“形”的特點和“數”的特點,這就使得向量成了數形結合的橋樑,向量的座標實際是把點與數聯絡了起來,進而可把曲線與方程聯絡起來,這樣就可用代數方程研究幾何問題。

  平面向量教學反思3

  本堂課屬於概念課,作為數學的概念課是非常難講的課題,一來你得讓學生在第一時間能清晰的對概念的內涵和外延有深的認識,爭取打成思維上的認同,避免理解的偏差和錯誤;二來更要讓學生能融入到他原有的知識結構體系中,把在碰撞中的問題在起始階段幫助他們搞透徹。這是一個很難處理的環節,因為學生是不是能準確積極的思維是你不能控制的,現在的學生總是喜歡去用這些東西死死的去做題,根本不去深刻理解其中的內涵,總是在不斷的做題中去發現自己對概念定理的誤區,從而在錯誤中爬起來,爬起來再倒下,如此數個回合,有些明白了,有些就覺得難的要死......其實根本的原因還是在第一次接觸這個內容的課堂中自己埋下了“慘死”的伏筆!

  回首這堂課的設計,在公開課結束以後總體感覺還是不錯:

  1、課前設計4個前置活動,基本已經把定理中基本環節搞清了,但是對於核心的部分還沒有處理好;

  2、透過課內探究的第5個活動,(學生課前的做的學案都錯誤了)旨在讓學生養成一種分類討論的思想,同時更好的明確定理中為什麼兩個原始向量必須不共線;

  3、作為定理的探究還要進一步的明確任意向量都可以有兩個原始向量線性表示中的任意,這個任意性的處理也是這堂課中的難點,由此也要把定理的拓展定理搞明白,讓學生真正知道好多問題的實質在何方!

  4、定理中存在唯一性的問題很好處理,學生理解也沒有問題,這是很好的表現。

  總評此定理要明確不共線、存在唯一、對於任意向量的分類處理以及從中拓展的定理和應用。

  存在的幾個問題:

  1、在最後的環節中處理有點倉促,還沒有小結;

  2、課堂把握上前松後緊,如果最後的課堂檢測,分組處理會更好,這樣可以有小結反思的時間;

  3、課件的製作中對於拓展定理的證明可以提到前面一張幻燈片,這樣似乎更自然;

  4、路漫漫的環節,沒有處理,本來是想出彩的,可是沒有出上呵呵,但是我的觀點還是應該把課堂延續到課外,讓學生能知道下一節課的學習其實和以前我們學習的東西是有連貫性的,告誡學生需要週而復始的一點一滴的積累,把課堂的每一個細節都做好。

最近訪問