《直線與圓的位置關係》教學案例及反思
《直線與圓的位置關係》教學案例及反思
[設計理念]
依據《數學課程標準》,數學源於生活,從生活中構建數學模型,應用數學思維方式觀察、分析、探索、發現規律,並應用其解決生活中的實際問題,培養學生的實踐能力,使學生學有所值,且能學以致用,《直線與圓的位置關係》教學案例與反思。
[教學過程及步驟]
1、教學目標:
(1)知識目標:理解直線與圓有三種位置關係,並能利用公共點的個數、圓心到直線的距離與半徑之間關係來判定它。
(2)能力目標:培養學生類比、歸納、觀察及想象的能力
(3)情感目標:滲透從特殊到一般、數學轉化的思想及運動的觀點
(4)德育目標:創設問題的情景,讓學生主動地發展
2、教學重點:
3、教學難點:
(1)理解“切線”定義中的:“唯一”。
(2)靈活準確應用相關性質解決問題
4、教學方法:想象觀察法、類比歸納法、討論法、練習法
5、教學手段:多媒體投影
6、教學過程
(1)激情引入:根據太陽東昇西落的自然景觀引入新課,讓學生在美的境界中進入學習狀態,教育論文《《直線與圓的位置關係》教學案例與反思》。
(2)探索發現:教師畫一直線,並拿圓環在直線上移動,提問:直線與圓的公共點有幾種情況?學生思考、觀察並回答。由想象過度到實物演示,讓學生直觀看到變化過程,又抽象到具體,形成知識,然後生自讀課文,理解概念,並動手畫出直線與圓的三種不同位置關係圖。讓學生在操作中再現知識的形成過程。
(3)類比歸納:師提問:點與圓的位置關係如何判定,能否類比點與圓位置關係的判定方法來判定直線與圓的位置關係呢?學生以小組的形式研究、探討用圓心到直線的距離與半徑的大小關係來判定直線與圓的.位置關係。
師透過提出問題給學生充分的合作探討的機會,讓學生自主發展,並充分展示自己的發現,最後師生共同歸納直線與圓的位置關係的判定方法。
(4)典型題訓練:出示例題,學生獨立解決並指名講解,師指導方法。
(5)知識應用:分A、B、C三個層次,
A層:基礎篇:直接利用本節課的知識點解決問題
B層:提高篇:靈活、綜合的應用知識,解決相關的問題
C層:視野拓展篇:把生活中的實際問題與本節課的知識有機的結合起來,並應用數學方法解決生活中的實際問題。