小學六年級數學《比的基本性質》教學設計教案(精選10篇)

小學六年級數學《比的基本性質》教學設計教案(精選10篇)

  作為一名默默奉獻的教育工作者,通常需要準備好一份教學設計,教學設計是連線基礎理論與實踐的橋樑,對於教學理論與實踐的緊密結合具有溝通作用。那麼你有了解過教學設計嗎?以下是小編為大家整理的小學六年級數學《比的基本性質》教學設計教案,希望能夠幫助到大家。

  小學六年級數學《比的基本性質》教學設計教案 篇1

  教學內容:

  人教版小學數學教材六年級上冊第50~51頁內容及相關練習。

  教學目標:

  1.理解和掌握比的基本性質,並能應用比的基本性質化簡比,初步掌握化簡比的方法。

  2.在自主探索的過程中,溝通比和除法、分數之間的聯絡,培養觀察、比較、推理、概括、合作、交流等數學能力。

  3.初步滲透轉化的數學思想,並使學生認識知識之間都是存在內在聯絡的。

  教學重點:

  理解比的基本性質

  教學難點:

  正確應用比的基本性質化簡比

  教學準備:

  課件,答題紙,實物投影。

  教學過程:

  一、複習引入

  1.師:同學們先來回憶一下,關於比已經學習了什麼知識?

  預設:比的意義,比各部分的名稱,比與分數以及除法之間的關係等。

  2.你能直接說出700÷25的商嗎?

  (1)你是怎麼想的?

  (2)依據是什麼?

  3.你還記得分數的基本性質嗎?舉例說明。

  【設計意圖】影響學生學習的一個重要因素就是學生已經知道了什麼,於是此環節意在透過複習、回憶讓學生溝通比、除法和分數之間的關係,重現商不變性質和分數的基本性質,為類比推出比的基本性質埋下伏筆。同時,還有機滲透了轉化的數學思想,使學生感受知識之間存在著緊密的內在聯絡。

  二、新知探究

  (一)猜想比的基本性質

  1.師:我們知道,比與除法、分數之間存在著極其密切的聯絡,而除法具有商不變性質,分數有分數的基本性質,聯想這兩個性質,想一想:在比中又會有怎樣的規律或性質?

  預設:比的基本性質。

  2.學生紛紛猜想比的基本性質。

  預設:比的前項和後項同時乘或除以相同的數(0除外),比值不變。

  3.根據學生的猜想教師板書:比的前項和後項同時乘或除以相同的數(0除外),比值不變。

  【設計意圖】比的基本性質這一內容的學習非常適合培養學生的類比推理能力,學生在掌握商不變性質和分數的基本性質的基礎上,很自然地就能聯想到比的基本性質,這不僅激發了學生的學習興趣,同時也很好地培養了學生的語言表達能力。

  (二)驗證比的基本性質

  師:正如大家想的,比和除法、分數一樣,也具有屬於它自己的規律性質,那麼是否和大家猜想的“比的前項和後項同時乘或除以相同的數(0除外),比值不變”一樣呢?這需要我們透過研究證明。接下來,請大家分成四人小組合作學習,共同研究並驗證之前的猜想是否正確。

  1.教師說明合作要求。

  (1)獨立完成:寫出一個比,並用自己喜歡的方法進行驗證。

  (2)小組討論學習。

  ①每個同學分別向組內同學展示自己的研究成果,並依次交流(其他同學表明是否贊同此同學的結論)。

  ②如果有不同的觀點,則舉例說明,然後由組內同學再次進行討論研究。

  ③選派一個同學代表小組進行發言。

  2.集體交流(要求小組發言代表結合具體的例子在展臺上進行講解)。

  預設:根據比與除法、分數的關係進行驗證;根據比值驗證。

  3.全班驗證。

  16:20=(16○□):(20○□)。

  4.完善歸納,概括出比的基本性質。

  上題中○內可以怎樣填?□內可以填任意數嗎?為什麼?

  (1)學生髮表自己的見解並說明理由,教師完善板書。

  (2)學生開啟書本讀一讀比的基本性質,教師板書課題。(比的基本性質)

  5.質疑辨析,深化認識。

  【設計意圖】基於猜想的學習必定需要來自學生的自主探究進行驗證,而合作探究又是一種良好的學習方式,但合作學習不能流於形式。合作學習首先要讓學生獨立思考,讓學生產生自己的想法,然後再進行合作交流,這樣可以促使每個學生經歷自主探究的學習過程,交流過程中不僅培養了學生的推理概括能力,同時也真正內化了來自猜想的“比的基本性質”,從而大大提高了合作學習的實效性。

  三、比的基本性質的應用

  師:同學們,你們還記得我們學習分數的基本性質的用途嗎?什麼是最簡分數?

  今天我們發現的比的基本性質也有一個非常重要的用途──可以化簡比,進而得到一個最簡整數比。

  (一)理解最簡整數比的含義。

  1.引導學生自學最簡整數比的相關知識。

  預設:前項、後項互質的整數比稱為最簡整數比。

  2.從下列各比中找出最簡整數比,並簡述理由。

  3:4;18:12;19:10;;0.75:2。

  (二)初步應用。

  1.化簡前項、後項都是整數的比。(課件出示教材第50頁例1)

  學生獨立嘗試,化簡後交流。

  (1)15:10=(15÷5):(10÷5)=3:2;

  (2)180:120=(180÷□):(120÷□)=():()。

  預設:除以公因數和逐步除以公因數兩種方法,但重點強調除以公因數的方法。

  2.化簡前項、後項出現分數、小數的比。(課件出示)

  師:對於前項、後項是整數的比,我們只要除以它們的公因數就可以了,但是像:和0.75:2,

  這兩個比不是最簡整數比,你們能自己找到化簡的方法嗎?四人小組討論研究,找到化簡的方法。

  學生研究寫出具體過程,總結方法,並選代表展示彙報。教師對不同方法進行比較,引導學生掌握一般方法。

  預設:含有分數和小數的比都要先化成整數比,再進行化簡。有分數的先乘分母的最小公倍數;有小數的先把小數化成整數之後,再進行化簡。

  3.歸納小結:同學們透過自己的努力探索,總結出了將各類比化為最簡整數比的方法。化簡時,如果比的前項和後項都是整數,可以同時除以它們的公因數;遇到小數時先轉化成整數,再進行化簡;遇到分數時,可以同時乘分母的最小公倍數。

  4.方法補充,區分化簡比和求比值。

  還可以用什麼方法化簡比?(求比值)

  化簡比和求比值有什麼不同?

  預設:化簡比的最後結果是一個比,求比值的最後結果是一個數。

  5.嘗試練習。

  把下面各比化成最簡單的整數比(出示教材第51頁“做一做”)。

  32:16;48:40;0.15:0.3;

  【設計意圖】新課程標準提出教學中應該充分體現“以學生髮展為本”的教學理念,充分發揮學生的主體作用,使學生成為學習的主人。因此在運用比的基本性質化簡比的教學過程中,透過自學、獨立探究、小組合作等方式,為學生創造一個積極的數學活動的機會,鼓勵學生自主探究,找到化簡比的方法。

  四、鞏固練習

  (一)基礎練習

  1.教材第53頁第4題。

  把下列各比化成後項是100的比。

  (1)學校種植樹苗,成活的棵數與種植總棵數的比是49:50。

  (2)要配製一種藥水,藥劑的質量與藥水總質量的比是0.12:1。

  (3)某企業去年實際產值與計劃產值的比是275萬:250萬。

  2.教材第53頁第6題。

  (二)拓展練習(PPT課件出示)

  學生口答完成。

  1.2:3這個比中,前項增加12,要使比值不變,後項應該增加()。

  2.六(1)班男生人數是女生人數的1.2倍,男生、女生人數的比是(),男生和全班人數的比是(),女生和全班人數的比是()

  【設計意圖】練習的設計要緊緊圍繞教學的重難點,同時練習的編排應體現從易到難的層次性。第1題是針對比的基本性質的基礎練習,同時也為後續百分數的學習埋下伏筆。第2題訓練單位不同的兩個數量的比的化簡方法,培養學生的審題能力。拓展練習不僅發展學生思維的靈活性、培養學生的創造能力,而且很好地鞏固了本節課的知識,同時這類題型也是分數應用題、比例應用題的基礎訓練,也為以後分數應用題和比例應用題的學習打下紮實的基礎。

  五、課堂小結

  這節課你有什麼收穫?還有什麼疑問?

  小學六年級數學《比的基本性質》教學設計教案 篇2

  教學目標:

  1、瞭解比例各部分的名稱,探索並掌握比例的基本性質,會根據比例的基本性質正確判斷兩個比能否組成比例,能根據乘法等式寫出正確的比例。

  2、透過觀察、猜測、舉例驗證、歸納等數學活動,經歷探究比例基本性質的過程,滲透有序思考,感受變與不變的思想,體驗比例基本性質的應用價值。

  3、引導學生自主參與知識探究過程,培養學生初步的觀察、分析、比較、判斷、概括的能力,發展學生的思維。

  教學重點:

  探索並掌握比例的基本性質。

  教學難點:

  根據乘法等式寫出正確的比例。

  教學準備:

  多媒體課件

  整體設計說明:

  本班的孩子基礎較差,很多孩子沒有養成好的學習習慣,好的思考方法,所以課堂上的重點放在了發現並概括出比例的基本性質上。在比例的基本性質應用時,重點突出孩子的思考過程,強調孩子有根據地思考,養成獨立思考的習慣。

  教學過程

  一、舊知鋪墊匯入。

  1、一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。說一說上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什麼?

  2、比和比例有什麼區別?

  【設計意圖】

  注重從學生已有的知識出發,為新課做好鋪墊。

  二、自主探究

  過渡:同學們,比有各部位的名稱,把比組成比例後我們有了新的名稱,請自學課本第34頁。生閱讀後,請同學說出黑板上比例各部分的名稱。

  【設計意圖】

  組成比例的四個數的名稱的認識對孩子們來說是比較簡單的,所以讓孩子們自學,培養孩子的自主學習能力,養成讀數學書的習慣。

  三、反饋練習。

  指出下面比例的外項和內項。(投影出示)

  先小組之內說一說,然後在指名回答。重點說分數形式的比例外項和內項。

  【設計意圖】

  這一環節重點學習組成一個比例的兩個比哪兩個數是外項,哪兩個數是內項。重點突出分數形式下怎麼去找比例的內項和外項。

  四、探究比例的基本性質

  (1)投影出示幾組比例,讓學生觀察看看能有什麼發現?細心的同學很快會發現這幾組比例數字相同,但是書寫位置不同。然後老師在質疑,為什麼這些比例裡的四個數書寫位置不同卻能組成比例呢?請小組合作找個這個秘密。

  (2)學生找出原因後,教師引導學生用一句話總結出來。並指出這叫做比例的基本性質,板書課題。

  (3)繼續提出:是不是所有的比例都具有這樣的性質,舉例驗證,最後得出結論。

  (4)比例寫出分數形式後,也就是等號兩端的分子分母交叉相乘,乘得的積也一定相等。

  【設計意圖】

  這一環節我根據學生好奇的心理,用質疑的方式來激發學生的學習興趣,讓學生主動去探索新知,這樣也能讓學生體會到總結歸納的過程,並滲透科學態度的教育。

  五、鞏固練習

  1、應用比例的基本性質,判斷下面哪組中的兩個比能否組成比例(投影出示練習)。

  2、應用比例的意義或者基本性質,判斷下面哪組中的兩個比可以組成比例。

  (學生獨立完成後,用展示臺展示)

  3、根據比例的基本性質,在( )裡填上適當的數。(投影出示)

  六、全課總結:

  這節課你有什麼收穫。

  【設計意圖】

  關注學生知識與技能的掌握情況,並且留給孩子質疑問難的空間。

  七、拓展練習:把下面的等式改寫成比例。

  3×40=8×15

  小學六年級數學《比的基本性質》教學設計教案 篇3

  教學內容:蘇教版六年級下數學第38-39頁例4,練習七第1-4題

  教學目標:

  1、讓學生認識比例的內項和外項;發現並使理解和掌握比的基本性質。

  2、透過自主學習,讓學生學會根據比例的基本性質正確判斷兩個比能否組成比例。

  3、培養學生的抽象概括能力。使學生體驗數學學習成功的快樂。

  教學重點和難點 :

  1.理解並掌握比例的基本性質。

  2.探究、發現比例的基本性質。

  教學準備:多媒體課件

  教學過程:

  一、複習舊知

  1.師:同學們,上節課我們學習了比例,什麼叫做比例? 生:表示兩個比相等的式子叫作比例。 2.師:如何判斷兩個比能否組成比例?生:化簡比、求比值。

  3.判斷下面每組的比能否組成比例? 4:8和3:6 20:5和28:7 生1:因為 4∶8 = 1∶2

  3∶6 =1∶2

  所以 6∶10 = 9∶15 生2: 因為 20∶5 = 4∶1

  28∶7 = 4∶1

  所以 20∶5=28∶7.

  (學生邊說教師邊用課件展示解題過程,目的在於引導學生規範解題格式。)4.師:除了化簡比,求比值,還有沒有其他更簡單的方法呢?這就是今天我們要學習的內容。

  [設計意圖:藉助現代電教媒體,用形象、直觀的圖片,來激發學生的求知慾望,同時也培養了學生愛祖國、愛科學的情感。]

  二、探究比例的基本性質 1.教學例4 請看螢幕,把左邊的三角形按比例縮小後得到右邊的三角形。回答問題:?把原來的三角形按幾比幾來縮小的?

  ?兩個三角形的底和高分別是多少? ?你能根據圖中的資料寫出比例嗎? 學生獨立完成,然後彙報。 2.認識比例的項

  (1)觀察這幾組比例,它們有什麼共同點?

  說明:組成比例的四個數,叫作比例的項。兩端的兩項叫作比例的外項,中間的兩項叫作比例的內項。 (2)結合6:3=4:2具體說一說

  在比例6:3=4:2中,組成比例的四個數“

  6、

  3、

  4、2”叫作這個比例的項。兩端的兩項“6和2”叫作比例的外項。中間的兩項“3和4”叫作比例的內項。

  (3)提問:你能說出其它三個比例的內項和外項各是多少嗎?和你的同桌說一說。

  3.探究比例的基本性質

  認真觀察所寫出的比例,你有什麼發現? (1)6和2(或3和4)可以同時是比例的外項,也可以同時是比例的內項。

  (2)6×2=3×4,兩個外項的積等於兩個內項的積。 4.驗證 是不是所有的比例都有這樣的規律呢?請同學們任意寫出一個比例,驗證規律。

  (1)與同桌每人寫出一個比例,交換驗證。

  (2)全班交流:有沒有誰舉出的比例不符合這個規律? 5.如果用字母表示比例的四個項,即a:b=c:d,那麼,這個規律可以表示成什麼?(ad=bc)6.小結

  其實這個規律就是今天我們要學習的內容:在比例中,兩個外項的積等於兩個內項的積,這叫作比例的基本性質。(板書) 學生齊讀比例的基本性質.7.如果把比例6:3=4:2改寫成分數形式,可以怎麼改寫? (1)在這裡,誰是內項,誰是外項?

  (2)如果把等號兩端的分子、分母交叉相乘,結果會怎樣呢? (3)為什麼交叉相乘的積相等?明確:等號兩端的分子、分母交叉相乘,就是把兩個內項和兩個外項分別相乘,所以它們的積是相等的。 8.教學“試一試”

  (1)假設每組兩個比能組成比例,說出組成比例的內外項分別是什麼。

  (2)應用比例的基本性質判斷能否組成比例

  (3)交流:以前判斷兩個比能否組成比例是用什麼方法?透過今天的學習,我們知道還可以用什麼方法?[設計意圖:從學生熟悉的比入手教學,充分重視了學生原有的認知基礎,找準了新知識的生長點。然後放手讓學生自學,讓學生親自經歷知識的發生、發展過程,充分發揮了學生的主體作用。]

  三、鞏固練習

  1.完成“練一練”第1題。 (1)從表中你知道哪些資訊? (2)從表中選擇兩組資料,寫出一個乘積相等的式子。

  追問:為什麼每兩個數相乘的積相等? (因為每兩個數分別表示速度和時間,它們相乘的積表示路程,甲乙兩地路程一定,所以乘積都相等。)(3)根據“80×6=120×4”寫出比例,。

  學生獨立完成,教師巡視。

  交流:像這樣一個一個舉例寫出,難免會有重複或遺漏,怎樣思考才能很快地一個不漏地寫出來呢?根據比例的基本性質,先把80和6當做外項,再把80和6同時當做內項。這樣一共能寫出幾個比例?

  2、練習七第2題

  (1)下面四個數

  5、

  7、15和21可以組成比例嗎?你是怎樣想的? (2)學生獨立完成,然後觀察能寫出的有什麼規律?

  說明:任意給出4個數判斷能否組成比例,可以找出最大和最小項相乘,再把其他兩數相乘。

  (3)判斷2.4.6.8這四個數。若不能組成,你能換掉一個數,使之組成比例嗎?

  3.任意從1-10中,寫出4個數,判斷能否組成比例?

  與同桌合作完成。一個寫,另一個判斷。 4.我是小法官,對錯我來判。

  (1)在比例中,兩個外項的積減去兩個內項的積,差是0。 ( ) (2)如果4a=3b,(a和b均不為0),那麼a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因為3×10=5×6,所以3:5=10:6。 ( ) 5.完成“練一練”第2題

  (1)6和4是比例的什麼?聯絡比例的基本性質,括號裡可以填什麼?指名填空,並說理由。 (2)學生獨立完成第2小題。

  四、全課總結

  今天我們學習了什麼內容?你有什麼收穫?

  小學六年級數學《比的基本性質》教學設計教案 篇4

  教學目標:

  1.認識比例各部分名稱,理解比例的基本性質。

  2.能根據比例的基本性質,正確判斷兩個比能否組成比例。 3.在自主探究、觀察比較中,培養學生分析、概括能力。

  教學重、難點:

  重點:理解比例的基本性質,能正確判斷兩個比能否組成比例。 難點:自主探究比例的基本性質。

  教學過程:

  一、引入

  同學們,前段時間在上海舉辦了一個舉世聞名的盛會,知道是什麼嗎?(世博會)

  對,老師也去參觀了,參觀中,老師還拍下了我最喜歡的建築(出示:中國館圖片),知道這是什麼嗎?(中國館)

  對,中國館的造型很獨特,寓意也很深刻,老師想把他放大放到家裡做裝飾品,看看,哪一副圖是按比例放大後的照片,為什麼?

  生:第二幅只擴大了長,寬沒變,第三幅圖只擴大了寬,長沒變,第三幅圖長和寬都擴大了。

  二、探索新知

  師:透過觀察選擇了第三幅圖,如果給出相應的資料,你能結合前面學習的比例知識和大家說一說,為什麼選第三幅圖嗎?

  (給出資料: 20cm、10cm, 30cm、15cm) 師:有道理,根據這兩幅圖,你還能寫出哪些比例? (生獨立寫)

  反饋板書: 20∶30=10∶15

  30∶15=20∶10

  10∶15=20∶30

  20∶10=30∶15 講解:內項與外項

  剛才我們用四個陣列成了多個比例,在數學裡,我們把組成了比例的四個數,叫做比例的項,其中中間的兩個數叫做比例的內項,外面的兩個數叫做比例的外項。(板書)

  觀察:組成比例的內項和外項,你有什麼發現,並在小組內交流你的發現.反饋: 在比例裡,兩個內項的積等於兩個外項的積。

  師:同意嗎?

  師:說說你是怎麼想的,(板書:20×15=30×10)

  師:每一個人再寫一個比例,然後在小組內交流一下,看看是否有同樣的規律?

  學生寫並小組內交流。

  誰再來說一說這一發現?

  師:PPT出示(在比例裡,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。)

  如果a∶b=c∶d,那麼這個規律可以表示成什麼?

  學生口答,教師板書;a×d=b×c 如果把比例寫成分數形式,把等號兩端的分子、分母分別交叉相乘,結果怎樣?

  說一說 1.應用比例的基本性質,判斷下面的兩個比例能否組成比例,並說明理由。

  313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填

  根據比例的基本性質,在括號裡填上合適的數。

  2∶3=4∶( )(口答) 再出示:

  2∶4=3∶( ) ( ) ∶3=4∶2 讓學生填一填 為什麼都填的是6?

  看來用

  2、

  3、

  4、6可以組成不同的比例,還可以組成哪些比例呢? 學生自己獨立寫一寫。

  反饋:有什麼好方法能寫的又對又快。

  三、課堂小結

  小學六年級數學《比的基本性質》教學設計教案 篇5

  一、教學目標

  1.知識與技能目標:透過觀察、類比,使學生理解和掌握比的基本性質,並會運用這個性質把比化成最簡單的整數比。

  2.過程與方法目標:透過學習,培養學生觀察、類比的能力,滲透轉化的數學思想方法,培養學生思維的靈活性。

  3.情感態度價值觀目標:透過教學,使學生養成與人合作的意識,並能與他人互相交流思維的過程和結果。

  二、教學重難點

  重點:理解比的基本性質,掌握化簡比的方法。

  難點:理解化簡比與求比值的不同。

  三、教學過程

  尊敬的各位老師大家好,我是小學數學組2號考生,今天我試講的題目是比的基本性質,下面我將正式開始我的試講。

  上課,同學們好,請坐。

  【匯入】

  同學們,你們都喜歡看名偵探柯南嗎?這一天柯南又破案了,我們一起來看一看:

  某珠寶店發生了一起失竊案。小偷在現場只留了一個腳印,柯南根據腳印的長為25cm,就果斷推斷出了小偷的身高是175cm。

  你們想知道他是如何推斷出來的嗎?原來根據科學的驗證,人的腳長比人的身高等於1:7,你們知道柯南到底運用了怎樣的數學知識來破獲此案的呢?

  想不想成為像柯南一樣的小神探老師,相信透過這節課的學習你們能瞭解其中的奧秘,這節課就讓我們一起走進數學王國,去探究比的意義。

  【新授】

  活動一:

  上節課我們一起認識了比,誰來向大家分享一下比到底代表著怎樣的意義呢?請你來說,對學過的知識掌握的非常紮實,請坐。兩個數的比表示兩個數相除。那我們一起來看一看這個6:8就等於對,6÷8等於6/8,能夠約分等於3/4,所以比值是3/4。我們帶來看一看12 : 16等於12÷16,所以比值是12 / 16約分3/4。

  我們一起看一看,這兩個比它們之間有什麼區別和聯絡呢?請你來說觀察的非常細緻,它們的比值相等,誰還有別的發現,請你來說。真是一個愛動腦筋的好孩子,請坐。6:8,前項和後項都乘2,就變成了12 : 16。

  同學們還記得我們之前學過的商不變的規律嗎?誰來說一說。請你來說。說的非常準確,請坐,被除數和除數同時乘或除以一個不為零的數,商不變。那我們比如6÷8被除數和除數同時乘2,也就是6x2÷括號裡面的8x2等於12÷16。同樣的,我們的被除數和除數同時除以2,也就是6÷8,等於(6÷2)÷(8÷2)=3÷4

  活動二:

  那我們比中是否有類似的規律呢?我們一起來探究一下請同學們以四人為一組思考並注意以下幾個問題,根據比與除法之間的關係,以及除法商不變的規律,來思考6:8與12 : 16之間有怎樣的關係?二6:8與3:4之間又有什麼關係呢?你還有什麼發現?帶著這幾個問題,先獨立思考,再小組合作,老師相信小組的力量是強大的,討論完成以端正的坐姿來自於老師,看哪個小組的發現又多又好。開始。

  老師看同學們都已經做的很端正了。哪位同學願意向大家分享一下你們小組的討論成果?老師看一組的同學手舉的像小樹林一樣,1#3同學請你來說。思路非常清晰,請坐。

  利用比和除法的關係來研究6÷8寫成比的'形式,就是6:8。而(6x2)÷(8x2)寫成比的形式就是按括號裡面的6×2:括號裡面的8x2。又因為我們兩個數的比表示兩個數相除,而它們之間是相等的關係,除法算式是相等的關係,所以比值也相等,我們用等號來連線。接下來繼續,12÷16寫成比的形式就是12 : 16。同樣他們除法算式是相等的關係,由此得到它們之間的比值也是相等的,所以用等號來連線。

  其他小組還有不同的發現嗎?二組同學請你來說。說的非常有條理,請坐。6÷8寫成比的形式,就是6:8而6÷2,除以括號裡面的8÷2,寫成比的形式就是括號裡面的6÷2,比括號裡面的8÷2。又因為這兩個除法算式結果相同,也就是啊,它們的比值是相等的,所以用等號來連線。最後3÷4用比的形式就是按3:4,同樣比值相等,我們繼續用等號來連線。

  我們一起仔細觀察一下我們剛剛的探索的過程,你有哪些發現?又能得到怎樣的結論呢?誰來試一試?請你來說多麼了不起的發現,同學們掌聲送給這位同學。

  比的前項和後項同時乘或除以一個相同的數,比值不變。那同學們想一想,這個相同的書能為零嗎?對呀,當然不能為零,因為在除法算式中,除數不能為零。同學們可真棒,這麼快就探索出了比的這麼重要的規律。其實這就是我們這節課所要學習的內容,比的基本性質。

  活動三:

  剛剛我們是根據比和除法之間的關係探索比的基本性質,你能根據比和分數的關係研究比中的規律嗎?

  同桌之間相互合作,來試一試。老師看同學們都已經探索完了,那你們對比的基本性質理解的怎麼樣啦?在生活中我們根據比的基本性質,可以將比化成最簡的整數比,前項和後項只有公因數1是最簡單的整數比。

  觀察一下黑板上這些內容,以上就是本節課所要學習的比的基本性質。

  【鞏固練習】

  接下來老師就來考一考大家,同學們敢不敢接受老師的挑戰?這麼自信,請看大螢幕。

  神舟五號搭載了兩面聯合國國旗。你也是啊,長15cm,寬十釐米,另一面長180cm,寬120cm。那這兩面聯合國國旗長和寬的最簡整數比分別是多少呢?同學們趕緊來算一算。老師看,同學們都已經完成了,誰來說一說你是如何計算的?

  請你來說思路非常清晰,請坐,長與寬的比就是15 :10。因為15和十的最大公約數是五,所以前項和後項同時除以五,等於3:2,這就是它們的最簡整數比。而180 : 120,兩個數之間的對大姑約說啥60,所以前項和後項同時除以60。也得到了最簡整數比是3:2。

  看來這麼簡單的問題已經難不倒大家了,我們再來看一看1/6:2/9,求它的兌獎比誰來說一說你的思路。

  請你來說。說的非常清晰,請多因為分母六和九的最小公倍數是18,所以同時兩邊前項和後項同時乘18。得到最簡比是3:4。

  那0.75 :2呢?誰來說一說你的想法?請你來說小腦袋可真聰明,請坐。先將0.75化為整數,小數點兒,向右移動兩位乘100,所以前項和後項同時乘100,變成75 : 200。

  然後再將它們化簡為最簡單的整數比。也就是說,當一個比的前項和後項不是整數時,我們要先將它化為整數,再化為最簡的整數比。看來同學們對這節課的知識掌握的非常紮實了。

  【課堂小結】

  不知不解本節課已經接近了尾聲哪位同學來說一說本節課都有那些收穫呢?

  班長你手舉得最高你來說,他說啊透過本節課學習了比的基本性質,也就是比的前項和後項同時乘或除以一個相同的數,比值不變,0除外。看來啊本節課上特聽講非常認真,請坐!同學們在本節課上聽講非常認真,表現得都非常積極,老師給大家點一個大大的贊,希望同學們繼續保持!

  【作業佈置】

  那接下來老師老師給大家佈置一個小任務,課下去利用今天所學習知識測量一下書桌的長寬,看一看他們的比值是多少。下節課一起來交流討論一下。

  本節課就先上到這,下課,同學們再見!

  尊敬的各位考官,我的試講到此結束,感謝各位考官的耐心聆聽!

  小學六年級數學《比的基本性質》教學設計教案 篇6

  【教學內容】

  義務教育教科書六年級上冊第50-51頁。

  【教學目標】

  1、理解並掌握比的基本性質,掌握化簡比的方法,能正確地把一個比化成最簡整數比。

  2、透過遷移類推,培養學生的概括歸納能力,滲透轉化的數學思想,並使學生認識事物之間都是存在內在聯絡的。

  3、透過自主探究、合作交流等活動,發展學生概括推理能力。【教學重點】掌握化簡比的方法,能正確地把一個比化成最簡整數比。

  【教學難點】

  理解並掌握比的基本性質。

  【教具學具】

  課件。教學過程:

  一、回顧舊知。

  1、談話引入:“昨天我們學習了比的意義,我們說什麼是比?”

  2、比與除法和分數有什麼關係?

  比前項:(比號)後項

  比值除法

  被除數÷(除號)除數商分數

  分子-(分數線)分母分數值

  二、探究新知。

  探究一:比的基本性質

  1、同學看這個除法算式:

  它們是正確的嗎?為什麼?運用了除法的什麼性質?

  2、我們說比和除法有緊密的聯絡,那麼根據除法商不變的性質,我們看看比是不是也有類似的規律呢?

  3、根據比與分數的關係,我們還能怎麼研究比的規律?

  【設計意圖:透過除法商不變的性質、分數的基本性質進行類比推理,概括推理出比的基本性質,使學生利用舊的知識識得新的知識。】

  4、即時練習,強化鞏固

  在比的基本性質中,大家覺得要注意什麼?讓我們一起來看看:

  (1).根據108:18=6,說出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)

  (2).判斷並說明理由。

  (1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5

  探究二:根據比的性質我們能做什麼?(化簡比)

  1、明確什麼是“最簡整數比”。出示一些比,讓學生說說哪些是整數比,哪些是最簡整數比。

  2、出示例題,明確問題。

  例1:“神舟”五號搭載了兩面聯合國旗,一面長15cm,寬10cm,另一面長180cm,寬120cm。這兩面聯合國旗的長和寬的最簡單的整數比分別是多少?

  分別寫出兩個旗子的長寬比(15:10,180:120),他們是最簡整數比嗎?怎麼才能化成最簡整數比呢?引導學生說出比的前項和後項同時除以5(5是15和10的什麼數?為什麼要除以5?)

  學生總結方法:整數比化簡就是比的前項和後項同時除以它們的最大公因數。

  那麼用這個方法,我們能把180:120,化成最簡整數比嗎?(學生自行求最簡比)。

  3、剛才我們討論了整數比的化簡問題。我們知道兩個數相除就可以寫成比的形式。分數和小數也是數,它們的比又應該怎麼化簡呢?

  出示例題,全班討論猜想。學生獨立完成。

  集體訂正,總結方法“將分數比、小數比先化成整數比,然後再化成最簡整數比。”

  1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8

  探究三:一個比中有分數,又有小數該怎麼化簡呢?

  3出示0.125:,學生討論,彙報結果。

  8【設計意圖:在探究一的基礎上,學生透過探究二和探究三獲得將“新知識轉換成舊知識來解決”的能力。透過探究二、三突破本節課的難點。】

  三、強化新知,達標檢測。

  透過數學課本51頁“做一做”,強化認識。32:1648:400.15:0.35173::66128

  【設計意圖:強化訓練】

  四、總結評價

  這節課你有什麼收穫?還有什麼疑問?

  小學六年級數學《比的基本性質》教學設計教案 篇7

  教學目標:

  1、使學生理解並掌握比例的基本性質,學會應用比例的基本性質判斷兩個比能否組成比例,並能正確組成比例。

  2、培養學生的觀察能力、判斷能力

  教學重點:引導學生觀察、討論、試算,探究比例的基本性質。

  教學難點:應用比例基本性質判斷兩個比能否組成比例,並能正確地組成比例。

  教學過程:

  一、激趣匯入

  1、今天老師給大家帶來了一件東西,放在口袋裡呢,這東西大家平時都玩過,還挺熟悉的,四四方方的,猜猜看是什麼?(學生猜)

  2、還是讓老師給你點提示吧!

  課件逐句出示:買來方方一小盒,用時卻有幾十張,紅黑兄弟各一半,還有一對“雙胞胎”。

  3、現在知道是什麼了吧!課件出示:撲 克牌

  (設計說明:透過一則小小的謎語匯入新課,與之後的新授的比賽巧妙銜接,以撲 克牌激發學生的興趣。)

  二、探究新知

  (一)我們今天這堂課研究的數學問題就跟撲 克牌有關。你們都知道撲克牌有四種花色,而每一種花色都有13張。(課件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

  1、同學們你們都學過比例,請同學們用最快的速度從這13個數字中選擇你所需要的數字來寫出一個比例。

  2、學生彙報寫出的比例並說明理由。

  3、們都是選擇4個數字來組成比例。那你們想知道組成比例的4個數叫什麼名字呢?(想)那就請同學們自己預習課本43頁最後兩段(師出示課件預習提綱)。(板書:組成比例的四個數,叫做比例的項。兩端的兩項叫做比例的外項。中間的兩項叫做比例的內項。)

  4、就學生彙報的比例,找出內項與外項。

  (設計說明:透過一個寫比例的小活動,一是複習了比例的意義,二是教學了內項與外項。)

  (二)在剛才同學們寫比例的過程中,老師發現同學們的腦子轉得可真快,王老師想跟你們比一比,比誰能更快地按要求寫出比例。怎樣?敢接受老師的挑戰嗎?(生:敢)

  1、那我們就開始吧,請同學們先看“冠軍攻略”(比賽規則)

  課件出示:

  冠軍攻略

  參賽者:王老師,全班同學

  規則:迅速判斷由電腦隨機抽取出來的4張牌面上的數學能否組成比例,如果能,請寫下來。(至少寫兩個)(完成的可先舉手示意)

  2、第一輪:6、8、9、12

  (老師比學生提前寫完,並由學生驗證,得出老師勝)

  第二輪:3、5、4、8

  (老師比學生提前判斷出不能組成比例,並由學生驗證,老師勝)第三輪:4、8、6、3

  (老師比學生提前寫完比例,並由學生驗證,老師勝)

  (設計說明:由撲 克牌引出三輪比賽,設計都由老師勝出,學生由此產生疑問,為什麼老師能這麼厲害,這麼快地寫出8個比例,藉此激發學生探究。)

  3、同學們一定很好奇,老師為什麼能這麼快地判斷出這4個數能否組成比例,並能很快地寫出比例,其中有什麼奧秘?其實老師是有冠軍秘籍的,而秘密就藏在這些比例中。請同學們仔細觀察老師所寫的比例的內項與外項,小組交流討論,看看有什麼發現?

  4、學生彙報,驗證,課件出示“比例的基本性質以及字母公式”

  5、師講解如何很快的判斷4個數能否組成比例。

  (設計說明:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。)

  看樣子,同學們對新知掌握的不錯,願意接受挑戰嗎?

  (三)練習運用。

  1、應用比例的基本性質,判斷下面哪組中的兩個比可以組成比例

  6∶3和8∶50 2∶2.5和4∶50

  2、如果把2.4:1.6=60:40,改寫成分數的形式,你會寫嗎?等號兩邊的分子和分母分別交叉相乘,所得的積有什麼關係?

  指出:2.4與40的乘積等於1.6與60的乘積。

  三、課堂鞏固,練習提升

  1、用你喜歡的方法來判斷哪組中的兩個比能否組成比例。

  (1)14:21和6:9 (2)3/4:1/10和15/2:1

  (3)9:12和12:15 (4)1.4:2和7:10

  2、把圖A按比例放大得到圖B,按比例縮小得到圖C。根據圖中的資料組成比例。(課本46頁第3題)

  3、根據比例的基本性質,在括號裡填上合適的數。

  8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9

  四、實踐活動題

  8:A=B:1.5,那麼A和B可能是( )和( )

  如果A是小數,那麼A可能是( ),B可能是( )。

  如果A-B=1,那麼A可能是( ),B可能是( )

  如果A+B=7,那麼A可能是( ),B可能是( )

  (設計說明:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,最後一道開放題答案不,意在進一步讓學生體驗和感悟數學的“變”與“不變”的美妙與統一)

  五、全課總結

  透過這節課的學習,你有哪些收穫?

  小學六年級數學《比的基本性質》教學設計教案 篇8

  教材分析

  《比的基本性質》屬於數學概念教學。它是在學生學習了商不變的性質、分數的基本性質及理解比的意義,能正確求比值的基礎上進行教學的。它既是對前面所學知識的鞏固應用,也為學生今後學習比例打下堅實的基礎。本節課的知識目標是:使學生理解和掌握比的基本性質,並會應用這個性質把比化成最簡單的整數比。能力目標是:透過學習,培養學生的遷移類推能力和抽象概括能力。情感態度價值觀目標:教學中,鼓勵學生在教師創設的情境中主動地建構概念,應用概念,從而培養學生的探究意識,在活動中體驗成功的快樂。本課的教學重點是理解比的的基本性質,教學難點是應用比的基本性質化簡比。

  學情分析

  學生在以前的學習中,已經掌握了商不變的性質和分數基本性質,六年級的學生有一定的推理概括能力,他們完全可以根據比與分數、除法的關係,推匯出比的基本性質,這節課透過讓學生猜想--驗證--應用,讓學生理解比的基本性質,應用性質化簡比。

  教學目標

  1、使學生理解和掌握比的基本性質,能應用比的基本性質化簡比。

  2、培養學生的抽象概括能力。

  3、滲透轉化的數學思想。

  教學重點和難點

  教學重點:理解比的基本性質,掌握化簡比的方法。

  教學難點:掌握化簡比的方法。

  教學過程

  活動一

  1、出示例1,出示例1,讓學生解答。

  2、教學比例的基本性質

  (1)、猜想:我們學過除法中商不變的性質和分數的基本性質,根據比同除法、分數之間的聯絡,你有什麼聯想和猜測呢?

  生:比的前項和後項同時乘或除以相同的數(0除外),比值不變。

  (2)、驗證:大家敢於猜想值得表揚,許多發明創造都來自於猜想。不過,猜想畢竟是猜想,它還有待於證明。你們能想辦法對自己的猜想進行驗證嗎?(讓幾個小組的代表說一說驗證過程並板書在黑板上。)

  ①根據分數、比、除法的關係驗證。

  ②根據比值驗證。

  ......

  ③教師小結:大家的驗證都說明了以上的猜想是正確的,這個規律(指板書)就叫做比的基本性質(板書課題)。

  ④總結比的基本性質,為什麼強調0除外呢?

  活動二

  1、教學比的基本性質的應用,請同學們想一想,比的基本性質有什麼樣的用途?

  比的基本性質主要用來化簡比,一般把比化成最簡單的整數比(板書:最簡單的整數比。)

  2、根據你自己的理解,能說一說什麼是最簡單的整數比嗎?

  (前項和後項是互質數。)

  3、請同學們解答的例1(1),這兩個比是最簡比嗎?讓學生試著化簡比。

  讓學生試做後,總結方法。

  4、出示例1(2)①1/6:2/9②0.75:2

  學生先討論方法,再試做。

  5、小結方法:化簡時比的前項和後項都是整數時,可以把比寫成分數的形式再化簡;是小數先轉化為整數;是分數可以用求比值的方法化簡。但要注意,這個結果必須是一個比。

  6、化簡比與求比值有什麼不同?

  7、質疑

  活動三

  1、做一做46頁化簡比。

  2、48頁第4題

  教學反思

  比的基本性質這一課,我充分利用學生的已有知識,從把握新舊知識的相互聯絡開始,從分析它們的相似之處入手,透過讓學生聯想、猜測、觀察、類比、對比、類推、驗證等方法探討“比的基本性質”這一規律。由於在推導比的基本性質時要用到比與除法、分數的聯絡,除法的商不變性質,分數的基本性質等知識,因此教學新課時對這些知識做了一些複習,引導學生回憶並運用這兩條性質,為下一步的猜想和類推做好了知識上的準備。事實也證明,成功的鋪墊有利於新課的開展。學生透過比與除法、分數的聯絡,透過類比,很快地類推出比的基本性質。這樣一來節省了很多的時間,二來也讓學生初步感知了新知識。整節課無處不體現了學生是學習的主人,無時不滲透著學生主動探索的過程,不論是學生對比的基本性質的語言描述,還是對化簡比的方法的總結,都留下了學生成功的腳印。同時採用講練結合、說議感悟、對比總結、質疑探索、概括歸納的方法,掌握知識、應用知識、深化知識,形成清晰的知識體系,培養學生的創新能力和探索精神。學生學的輕鬆,教師教的愉快!

  注重練習題的設計,使學生積極主動的學習。練習題的設計應強調數學教學中培養學生學習數學的能力。在教學中我能抓住學生的心理特點,設計一些學生容易進入陷阱的題目,在這些小陷阱中,讓學生愉快地掌握知識,突破重點和難點。

  “興趣是的老師。”小學生對數學的迷戀往往是從興趣開始的,由興趣到探索,由探索到成功,在成功的愉快中產生新的興趣,推動數學學習不斷取得成功。但是數學的抽象性、嚴密性和應用的廣泛性又常使學生難以理解,甚至望而卻步。因此本節課教師從激發學生的學習興趣入手,引導學生用一系列的猜想來提高興趣,增強數學的趣味性,從而引發學生探求新知的慾望。有了興趣做支撐,後面的新課學習就積極主動。

  教學中我著力體現“以學生髮展為本”的教學理念,充分發揮學生的主體作用,使學生成為學習的主人,力求使學生在創新精神、實踐能力及情感態度方面得到均衡發展,但課中也存在遺憾,在以後教學中力求讓學生在知識點和概念上表述更準確。

  小學六年級數學《比的基本性質》教學設計教案 篇9

  教學目標:

  1、使學生認識比例的“項”以及“內項”和“外項”。

  2、理解並掌握比例的基本性質,會應用比例的基本性質正確判斷兩個比能否組成比例。

  3、透過自主學習,讓學生經歷探究的過程,體驗成功的快樂。

  教學重點:

  理解並掌握比例的基本性質。

  教學難點:

  引導觀察,自主探究發現比例的基本性質

  設計理念:

  本課時設計,在“項”以及“內項”和“外項”的認識的設計上,以學生在老師的引導下逐步理解比例的有關知識,是以教師講授為主。而在本課時第二大塊內容,理解並掌握比例的基本性質,本課時設計中,為學生提供開放真實的問題,透過學生自主收集資訊,嘗試探索規律,引導學生寫出不同比例,在此基礎上放手讓學生在觀察中發現、思考,引導學生主動探索比例的基本性質。

  教學過程:

  一、從知識的矛盾衝突中匯入並引入。

  3:8=9:( ) 0.5:( )=5:17

  製造衝突,也為後面的思考題做理論鋪墊,順便起到引入課題,探索性質後回應開頭的知識,也起到一定的教育作用。(請勇敢的同學配合老師)

  師:某某你出生的時間哪一年哪一月哪一日?(根據學生的回報板書兩次分子分母上下易位,同為比例的外項)

  你還想知道教師內誰的生日,請他告訴你.(板書一次,做一個內項,那麼括號應該怎樣填呢)今天學習了比例的基本性質我們就可以迅速的填出了。(板書:比例的基本性質)

  二、探索發現新知。

  1、引用練習中的3:8=9:24為例子,比例中的四個數叫什麼名字呢?兩端的兩項叫做什麼,中間的兩項叫做什麼?(自學課本)

  學生回報,師完成板書:

  (注意板書的時候教師的手勢要指明確到位)

  2、練習:請指出下列比例的兩個外項和內項各是多少?

  80:2=200:5

  6:10=9:15

  1/2:1/3=6:4

  0.2:2.5=4:50

  2.4:1.6=60:40

  3、這麼多的比例,每個比例的兩個外項和兩個內項之間存在有什麼共同的特點麼?可以說的具體一些。

  帶著問題小組內展開討論。(教師可以參與當中若干組的活動)時間2分鐘。

  4、小組彙報初步形成共識:在比例裡,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。(多找幾個小組發表意見)

  回到板書例題驗證:兩個外項的積是:3×24=72

  兩個內項的積是:8×9=72

  5、拿出自己任意找的5個比例,驗證是否存在相同的特點。(請學生在展臺展示自己的5個比例,並說明外項和內項的積情況)2明,如果出現不相等的,要觀察反例,說明兩個比組不成比例。

  6、完成板書:在比例裡,兩個外項的積等於兩個內項的積

  如果把比例寫成分數的形式呢,以板書的例子,寫成分數的形式,引入等號兩邊的分子和分母交叉相乘,所得的積相等。

  三、基本練習。

  1、應用比例的基本性質,判斷下面兩個比是否能組成比例。

  (1)6:3和8:5

  (2)1∶5和0.8∶4

  (3)1/3:1/4和12∶9

  (4)1.2:3/和4/5:5

  (注意學生語言敘述的規範性:如1)兩個外項的積是6×3=18,兩個內項的積是3×8=24,18≠24,所以不能組成比例)

  2、在括號裡填上適當的數

  (1)12:3=( ):5

  (2)( ):1/3=1/4:1/6

  (3)0.2:0.6=6:( )

  (4)4:3=80:( )

  3、用5、3、4、8這四個陣列比例,看看你能組幾個?為什麼?

  4、把5、3、4、8這四個數換掉其中的一個,組成比例。

  5、在例一個比中,兩個外項的積互為倒數,其中的一個內項是4/5,另一個內項是( )。

  6、回顧矛盾衝突題目:9解決因為兩個外項乘積是1,所以兩個外項乘積是1,另一個數就是那個已知資料的倒數。

  四、全課總結:

  談一談透過這節課的學習你有哪些收穫?(質疑,並完成課題總結),提出預習任務,(那麼利用比的基本性質如和求比例中的未知數呢,請自覺預習課本35頁的例題2和3)

  小學六年級數學《比的基本性質》教學設計教案 篇10

  學習目標:

  1、理解並掌握比的基本性質。

  2、能應用比的基本性質化簡比。

  教學重點:

  比的基本性質,化簡比的方法。

  教學難點:

  化簡比與求比值的區別。

  教學過程:

  一、激情導課

  1、複習匯入

  上節課我們學習了比,說說你對比的理解?怎樣求比值?

  你還記得除法有什麼性質?分數又有什麼性質嗎?

  除法有商不變的性質,分數有分數的基本性質,聯絡比和除法、分數的關係,同學們猜想一下在比中是否也有類似的性質呢?

  2、學習目標:

  (1)理解比的基本性質。

  (2)會運用比的基本性質化簡比。

  二、民主導學

  1、探究比的基本性質

  溫馨提示:

  自學書上50頁的內容,可以利用比和除法的關係來研究,也可以根據比和分數的關係來研究。

  (1)小組合作學習。

  (2)全班彙報交流。

  (3)總結歸納:比的前項和後項同時乘或除以相同的數(0除外),比值不變,這叫做比的基本性質。

  (4)根據商不變性質,我們可以進行除法的簡算。根據分數的基本性質,我們可以把分數化成最簡單的整數比,即化簡比。

  理解最簡單的整數比的意義。

  ①舉例:4:6=2:3

  前項、後項同時除以2,前、後項必須是整數,而且互質

  符合最簡單的整數比要符合兩個條件:一是比的前項,後項必須是整數,二是這兩個整數必須是互質數,也就是這兩個整數只有公約數1。

  ②判斷:下面哪些比是最簡比

  6:92:94:22 7:13

  2、探究化簡比的方法。

  出示例題:

  (1)“神舟”五號搭載了兩面聯合國旗,一面長15cm,寬10cm,另一面長180cm,寬120cm。

  ①學生嘗試完成,師巡視指導,要求寫出化簡過程。

  ②師生共同講評:教師板書過程。問:化簡比的結果是什麼?

  讓學生明確還是一個比。

  (2)把下面各比化成最簡單的整數比。

  0.75:2

  觀察0.75:2這個比,並與例1比較,有什麼不同之處,怎樣把小數轉化成整數,比值不變?

  引導學生可以乘整十整百的數,變成整數。學生獨立完成。

  除此之外還有沒有其他的方法?

  可以把0.75轉化成分數,:2怎樣化簡呢?

  引導學生想辦法去掉分母,前項和後項可以同時乘4。

  最後出示:,想一想怎樣化簡?

  總結歸納:①化簡比的方法

  ②不管選擇哪種方法,最後的結果都是一個最簡單的整數比,而不是一個數。

  三、檢測導結

  1、化簡下列各比。

  15:210

  12:0.4

  3(2):2(1)

  1:3(2)

  2、判斷:下面說法對嗎?

  (1)0.48∶0.6化簡後是0.8。()

  (2)4(3):2(1)化簡後是12(1)。()

  (3)0.4∶1化簡後是2:5。()

  3、連線:幫小蝸牛找家

  4、寫出各杯子中糖與水的質量比。

  這幾杯糖水有一樣甜的嗎?

  四、反思總結:

  這節課我們學習了什麼知識?

  和同學們分享一下你的收穫吧。

  板書設計:

  比的基本性質

  比的前項和後項同時乘或除以相同的數(0除外),比值不變。

  求比值:結果是一個數

  化簡比:結果是一個比

最近訪問