《中位數》評課稿

《中位數》評課稿

  今天我校開展了縣公開課觀摩課,在本次活動中,餘老師所執教的《中位數》一課是在學生已經掌握了平均數,知道平均數是描述資料集中程度的一個統計量,用它來表示一組資料的情況,具有直觀、簡明的特點的基礎上進行教學的。平時生活中,我們用得最廣的是平均數,對平均數的體驗也較多,但是當一組資料中有個別數據偏大或偏小時,也就是出現極端資料時,平均數就不適合代表該組資料的一般水平,這時就需要用新的統計量,中位數便應需而生。在本節課中,餘老師是透過“引入中位數的必要性→什麼是中位數→怎麼找中位數→中位數與平均數的聯絡和區別→何時用中位數”這條主線展開教學的,引導學生理解中位數的意義,從而明白中位數是對描述一組資料集中趨勢的進一步完善,提高學生分析資料的能力,學會從單一的平均數的評價到多元化的綜合評價,體現了數學的價值。縱觀本節課主要有以下幾個亮點:

  一、在比較中引入。

  在本節課教學中,餘老師就以平均數為參照物,先讓學生根據平均成績來比較三年1班第一組與第二組同學的跳繩水平,第一組同學的平均數高,學生們一致認為第一組同學的跳繩水平好一些,接著餘老師就引導學生去分析、比較第一、二組的具體資料。在比較中學生們發現“第二組大部分同學的跳繩成績要比第一組的好”,他們在這樣的情境中產生了認知衝突,發現這時用平均數來代表第一組資料的一般水平不太合適,應該要用一個新的統計量來表示,這樣中位數的引入也就水到渠成了。然後,餘老師再不斷地引導學生比較中位數與平均數,從而得出“平均數只是一個‘虛擬’的數,即一組資料的和除以該組資料的個數所得的商,而中位數並不完全是‘虛擬’數,當一組資料有奇數個時,它就是該組資料順序排列後最中間的那個資料,在資料個數為偶數的情況下,中位數是最中間兩個資料的平均數,是這組資料中真實存在的一個數據;平均數的大小與一組資料裡的每個資料都有關係,任何一個數據的變動都會引起平均數大小的改變,而中位數則僅與一組資料的排列位置有關,某些資料的變動對中位數沒有影響”,所以當一組資料的個別資料偏大或偏小時,用中位數來描述該組資料的一般水平就比較合適。這樣地教學,不僅能夠自然的從舊知過渡到新知,而且便於學生理解和掌握“中位數”這個新的統計量。

  二、在語言中理解。

  數學語言:精煉,簡潔,準確,要有一針見血的功效。數學語言既是數學知識的重要組成部分,又是數學知識的載體。各種定義、定理、公式、法則和性質等無不是透過數學語言來表述的。離開了數學語言,數學知識就成了“水中月,鏡中花”。在本節課教學中,餘老師不僅自己能夠用準確、科學的數學語言進行教學,而且還要求學生在正確理解數學語言的基礎上,學會用準確、科學的數學語言回答各種數學問題。學生不是一天學會表達的,需要教師假以時日,善於抓住契機對學生進行數學語言的訓練,其實質上是思維的訓練。“什麼是中位數?就是中間位置上的數,我們用這兩個字來組詞就可以了。”原來概念的建立有許多途徑和方法,直觀體驗,歸納概括,也可以抓住字面意義來理解。語言是思維的物質外殼,什麼樣的思維依賴於什麼樣的語言。餘老師獨闢蹊徑,緊扣“中”、“位”兩個字,組詞釋義,幫助學生進一步理解和掌握中位數這一概念,使學生模糊的認識和語言敘述在老師的引導下逐漸清晰和簡潔起來。我相信,嚴謹縝密、具有高度邏輯性的數學語言是發展邏輯思維的`“精髓”。

  三、在練習中發展。

  本節課,餘老師還設計了找“從大到小排列好的奇數個數據的中位數→無大小順序排列好的奇數個數據的中位數→找偶數個數據的中位數→三輪擲沙包,每一輪該用‘平均數’,還是用‘中位數’合適→讀了‘五(6)班9名同學跳遠成績的中位數是2.59米’想到了什麼?”等有針對性、有層次性的練習,能夠考慮到不同的學生要有不同的發展。既有及時鞏固當堂所學的知識和基本技能的基礎題,又有鍛鍊和提高學生思維能力的拓展題,使學生在掌握知識的同時拓展了思維,培養了能力。這樣,透過具體例項,從不同角度考慮集中趨勢問題、解決問題,進而理解平均數、中位數間的聯絡與區別,既鞏固了學生所學的知識,又使他們得到了不同程度的發展。

  總之,在本節課的學習中,餘老師能夠善於利用每一組資料,引導學生加以分析、比較,從而明瞭何時可用“平均數”,何時可用“中位數”來表示該組資料的一般水平更為合適。讓學生在分析、比較中所收穫的不僅有知識,還包括能力、方法、情感等,同時他們也體驗到學習的樂趣,增強了學好數學的信心。

最近訪問