示波器實驗報告

示波器實驗報告

  不少朋友都不會寫示波器實驗報告,那麼,今天,CN人才公文網小編給大家介紹的是示波器實驗報告,希望對大家有幫助。

  示波器實驗報告

  【實驗題目】 示波器的原理和使用

  【實驗目的】

  1.瞭解示波器的基本機構和工作原理,掌握使用示波器和訊號發生器的基本方法。

  2.學會使用示波器觀測電訊號波形和電壓副值以及頻率。

  3.學會使用示波器觀察李薩如圖並測頻率。

  【實驗原理】

  1.示波器都包括幾個基本組成部分:

  示波管(陰極射線管)、垂直放大電路(Y放大)、水平放大電路(X放大)、掃描訊號電路(鋸齒波發生器)、同步電路、電源等。

  2.李薩如圖形的原理:

  如果示波器的X和Y輸入時頻率相同或成簡單整數比的兩個正弦電壓,則熒光屏上將呈現特殊的光點軌跡,這種軌跡圖稱為李薩如圖形。

  如果作一個限制光點x、y方向變化範圍的假想方框,則圖形與此框相切時,橫邊上的切點數nx與豎邊上的切點數ny之比恰好等於Y與X輸入的兩正弦訊號的頻率之比,即fy:fx=nx:ny。

  【實驗儀器】

  示波器×1,訊號發生器×2,訊號線×2。

  【實驗內容】

  1.基礎操作:

  瞭解示波器工作原理的基礎上閱讀所用機器的說明書,瞭解每個旋鈕的作用。其中最主要也是經常使用的旋鈕為橫向和縱向兩個。橫向旋鈕是控制掃描時間的旋鈕,調節時表現為熒光屏上顯示波形發生橫向的壓縮或展開;縱向旋鈕是調節垂直放大電路的旋鈕,調節時表現為熒光屏上顯示波形發生縱向的展開或壓縮,次旋鈕為兩個,分別控制示波器的兩個輸入訊號。

  明確操作步驟及注意事項後,接通示波器電源開關。先找到掃描線並調至清晰。

  2.觀測李薩如圖形:

  向CH1、CH2分別輸入兩個訊號源的正弦波,“掃描時間”的“粗調”旋鈕置於“X-Y”方式(即使兩路訊號進行合成)。調出不同比值的李薩如圖形來,畫出草圖,並分析圖形的特點與兩個訊號頻率之間的關係。繪出所觀察到的各種頻率比的李薩如圖形。

  設fx=1000Hz為約定真值,依次求出另一訊號發生器的輸出頻率fy,並與該訊號發生器讀數值f′y進行比較,一一求出它們的相對誤差。

  【實驗資料】

  【實驗結果】

  【誤差分析】

  1.兩臺訊號發生器不協調。

  2.桌面振動造成的影響。

  3.示波器上顯示的熒光線較粗,取電壓值時的熒光線間寬度不準,使電壓值不準。

  4.取正弦週期時肉眼調節兩熒光線間寬度不準,導致週期不準。

  5.機器系統存在系統誤差。

  6.fy選取時上下跳動,可能取值不準。

  相關知識

  1 示波器工作原理

  示波器是利用電子示波管的特性,將人眼無法直接觀測的交變電訊號轉換成影象,顯示在熒光屏上以便測量的電子測量儀器。它是觀察數位電路實驗現象、分析實驗中的問題、測量實驗結果必不可少的重要儀器。示波器由示波管和電源系統、同步系統、X軸偏轉系統、Y軸偏轉系統、延遲掃描系統、標準訊號源組成。

  1.1 示波管

  陰極射線管(CRT)簡稱示波管,是示波器的核心。它將電訊號轉換為光訊號。正如圖1所示,電子槍、偏轉系統和熒光屏三部分密封在一個真空玻璃殼內,構成了一個完整的示波管。

  1.熒光屏

  現在的示波管屏面通常是矩形平面,內表面沉積一層磷光材料構成熒光膜。在熒光膜上常又增加一層蒸發鋁膜。高速電子穿過鋁膜,撞擊熒光粉而發光形成亮點。鋁膜具有內反射作用,有利於提高亮點的輝度。鋁膜還有散熱等其他作用。

  當電子停止轟擊後,亮點不能立即消失而要保留一段時間。亮點輝度下降到原始值的10%所經過的時間叫做“餘輝時間”。餘輝時間短於10μs為極短餘輝,10μs—1ms為短餘輝,1ms—0.1s為中餘輝,0.1s-1s為長餘輝,大於1s為極長餘輝。一般的示波器配備中餘輝示波管,高頻示波器選用短餘輝,低頻示波器選用長餘輝。

  由於所用磷光材料不同,熒光屏上能發出不同顏色的光。一般示波器多采用發綠光的示波管,以保護人的眼睛。

  2.電子槍及聚焦

  電子槍由燈絲(F)、陰極(K)、柵極(G1)、前加速極(G2)(或稱第二柵極)、第一陽極(A1)和第二陽極(A2)組成。它的作用是發射電子並形成很細的高速電子束。燈絲通電加熱陰極,陰極受熱發射電子。柵極是一個頂部有小孔的金屬園筒,套在陰極外面。由於柵極電位比陰極低,對陰極發射的電子起控制作用,一般只有運動初速度大的少量電子,在陽極電壓的作用下能穿過柵極小孔,奔向熒光屏。初速度小的電子仍返回陰極。如果柵極電位過低,則全部電子返回陰極,即管子截止。調節電路中的W1電位器,可以改變柵極電位,控制射向熒光屏的電子流密度,從而達到調節亮點的輝度。第一陽極、第二陽極和前加速極都是與陰極在同一條軸線上的三個金屬圓筒。前加速極G2與A2相連,所加電位比A1高。G2的正電位對陰極電子奔向熒光屏起加速作用。

  電子束從陰極奔向熒光屏的過程中,經過兩次聚焦過程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一電子透鏡。第二次聚焦發生在G2、A1、A2區域,調節第二陽極A2的電位,能使電子束正好會聚於熒光屏上的一點,這是第二次聚焦。A1上的電壓叫做聚焦電壓,A1又被叫做聚焦極。有時調節A1電壓仍不能滿足良好聚焦,需微調第二陽極A2的電壓,A2又叫做輔助聚焦極。

  3.偏轉系統

  偏轉系統控制電子射線方向,使熒光屏上的光點隨外加訊號的變化描繪出被測訊號的波形。圖8.1中,Y1、Y2和Xl、X2兩對互相垂直的偏轉板組成偏轉系統。Y軸偏轉板在前,X軸偏轉板在後,因此Y軸靈敏度高(被測訊號經處理後加到Y軸)。兩對偏轉板分別加上電壓,使兩對偏轉板間各自形成電場,分別控制電子束在垂直方向和水平方向偏轉。

  4.示波管的電源

  為使示波管正常工作,對電源供給有一定要求。規定第二陽極與偏轉板之間電位相近,偏轉板的平均電位為零或接近為零。陰極必須工作在負電位上。柵極G1相對陰極為負電位(—30V~—100V),而且可調,以實現輝度調節。第一陽極為正電位(約+100V~+600V),也應可調,用作聚焦調節。第二陽極與前加速極相連,對陰極為正高壓(約+1000V),相對於地電位的可調範圍為±50V。由於示波管各電極電流很小,可以用公共高壓經電阻分壓器供電。

  1.2 示波器的基本組成

  從上一小節可以看出,只要控制X軸偏轉板和Y軸偏轉板上的電壓,就能控制示波管顯示的圖形形狀。我們知道,一個電子訊號是時間的函式f(t),它隨時間的變化而變化。因此,只要在示波管的X軸偏轉板上加一個與時間變數成正比的電壓,在y軸加上被測訊號(經過比例放大或者縮小),示波管螢幕上就會顯示出被測訊號隨時間變化的圖形。電訊號中,在一段時間內與時間變數成正比的訊號是鋸齒波。

  示波器的基本組成框圖如圖2所示。它由示波管、Y軸系統、X軸系統、Z軸系統和電源等五部分組成。

  被測訊號①接到“Y"輸入端,經Y軸衰減器適當衰減後送至Y1放大器(前置放大),推輓輸出訊號②和③。經延遲級延遲Г1時間,到Y2放大器。放大後產生足夠大的訊號④和⑤,加到示波管的Y軸偏轉板上。為了在螢幕上顯示出完整的穩定波形,將Y軸的被測訊號③引入X軸系統的觸發電路,在引入訊號的正(或者負)極性的某一電平值產生觸發脈衝⑥,啟動鋸齒波掃描電路(時基發生器),產生掃描電壓⑦。由於從觸發到啟動掃描有一時間延遲Г2,為保證Y軸訊號到達熒光屏之前X軸開始掃描,Y軸的延遲時間Г1應稍大於X軸的延遲時間Г2。掃描電壓⑦經X軸放大器放大,產生推輓輸出⑨和⑩,加到示波管的X軸偏轉板上。z軸系統用於放大掃描電壓正程,並且變成正向矩形波,送到示波管柵極。這使得在掃描正程顯示的波形有某一固定輝度,而在掃描回程進行抹跡。

  以上是示波器的基本工作原理。雙蹤顯示則是利用電子開關將Y軸輸入的兩個不同的被測訊號分別

最近訪問