高一直線與方程及立體幾何知識點歸納
高一直線與方程及立體幾何知識點歸納
【直線與方程】
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不透過傾斜角而由直線上兩點的座標直接求得;
(4)求直線的傾斜角可由直線上兩點的座標先求斜率得到。
【立體幾何】
1、柱、錐、臺、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側稜平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)稜臺:
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三稜態、四稜臺、五稜臺等
表示:用各頂點字母,如五稜臺
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側稜交於原稜錐的頂點
(3)稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的'三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐。
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一週所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分。
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一週形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。