基於多島遺傳演算法的多狀態動力學模型並行修正方法論文
基於多島遺傳演算法的多狀態動力學模型並行修正方法論文
0 引 言
隨著動態設計在航空、航天器研製中越來越重要,結構動力學數值模擬已成為設計中不可或缺的重要環節。但由於離散化誤差、邊界條件的近似、接頭及連線處建模不準,使得複雜結構動力學數值分析結果與試驗測試結果之間存在較大差異,需要透過試驗結果對數值分析模型進行修正以正確預示結構動力行為。模型修正的本質是一種結構最佳化問題,傳統的結構動力學模型修正方法針對產品單一試驗狀態進行,對於同一產品多個試驗狀態需要分別對動力學模型進行修正,導致同一產品模型修正後對於不同試驗狀態幾何或材料引數不一致,與實際產品狀態不符。同時,傳統的結構動力學模型修正方法多采用基於目標函式梯度的最佳化演算法,這類最佳化演算法屬於區域性最佳化演算法,目標空間存在多個極值時難以尋找到全域性最優解。
針對上述問題,本文提出一種多狀態動力學模型並行修正方法,該方法可對同一產品不同狀態動力學模型同時進行修正,且在模型修正過程中採用統一的模型引數,符合實際產品狀態;採用多島遺傳演算法驅動動力學模型修正流程,確保最佳化目標收斂到全域性最優解。以某飛行器為例,對其進行動力學模型修正,驗證了方法的有效性。
1 動力學模型並行修正方法
目前,工程中廣泛採用以結構幾何和材料引數為設計變數的引數型修正方法,該方法能夠保證修正後模型質量、剛度矩陣保持帶狀對稱特徵,修正結果具有明確的物理意義。本文對傳統的引數型修正方法進行擴充套件,提出了結構動力學模型並行修正方法。該方法包含系統級和子系統級兩層系統,針對不同試驗狀態分別建立其數值分析模型,並行開展不同試驗狀態的動力學特性分析,形成子系統層;將各模型分析中需要的'設計引數合併到系統級設計向量中,依據各模型需要分配設計引數,保證在修正過程中不同狀態的模型引數一致。
2 多島遺傳演算法
遺傳演算法是一類借鑑生物界的進化規律演化而來的非經典最佳化演算法。與傳統的最佳化演算法相比,遺傳演算法不存在求導和目標函式連續性的限定,且具有全域性尋優能力。但傳統的遺傳演算法在最佳化過程中基因突變的機率較低,容易在進化幾代後出現早熟現象,導致最佳化結果收斂於區域性最優解。
3 數值算例
以某飛行器為例,依據其一級滿油、一級空油、二級滿油、二級空油 4 種典型飛行狀態下的前兩階模態頻率和振型試驗結果,選取各艙段材料的彈性模量為最佳化變數,數值分析與試驗結果差異為最佳化目標,採用本文方法進行動力學模型修正。
4 結 論
a)提出了基於多島遺傳演算法的多狀態結構動力學模型並行修正方法,改進了傳統方法針對同一產品不同試驗狀態分別修正模型,導致同一產品模型引數不一致的不足,更符合工程實際;
b)動力學模型並行修正方法中各試驗狀態的殘差之間相互獨立,且對殘差的物理意義沒有約束,可以同時對動力學特性和動力學響應模型進行修正;
c)採用多島遺傳演算法驅動最佳化流程,避免了經典最佳化演算法需要對目標函式求導的限制,同時保證了設計引數收斂於全域性最優解;
d)模型修正後模態頻率和振型更接近實測值,可為工程設計採用。