初二下冊數學知識點總結
初二下冊數學知識點總結
總結是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規律性結論的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結吧。你所見過的總結應該是什麼樣的?下面是小編收集整理的初二下冊數學知識點總結,僅供參考,大家一起來看看吧。
初二下冊數學知識點總結1
1、正方形的概念
有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最後證明它是矩形(或菱形)。
初二下冊數學知識點總結2
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函式
1反比例函式的表示式、影象、性質
影象:雙曲線
表示式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函式在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的.平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章資料的分析
加權平均數、中位數、眾數、極差、方差
初二必備數學知識
位置與座標
1、確定位置
在平面內,確定物體的位置一般需要兩個資料。
2、平面直角座標系及有關概念
①平面直角座標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角座標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱座標軸。它們的公共原點O稱為直角座標系的原點;建立了直角座標系的平面,叫做座標平面。
②座標軸和象限
為了便於描述座標平面內點的位置,把座標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(座標軸上的點),不屬於任何一個象限。
③點的座標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫座標、縱座標,有序數對(a,b)叫做點P的座標。
點的座標用(a,b)表示,其順序是橫座標在前,縱座標在後,中間有“,”分開,橫、縱座標的位置不能顛倒。平面內點的座標是有序實數對,(a,b)和(b,a)是兩個不同點的座標。
平面內點的與有序實數對是一一對應的。
④不同位置的點的座標的特徵
a、各象限內點的座標的特徵
點P(x,y)在第一象限→ x>0,y>0
點P(x,y)在第二象限→ x0
點P(x,y)在第三象限→ x<0,y<0
點P(x,y)在第四象限→ x>0,y<0
b、座標軸上的點的特徵
點P(x,y)在x軸上→ y=0,x為任意實數
點P(x,y)在y軸上→ x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P座標為(0,0)即原點
c、兩條座標軸夾角平分線上點的座標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上→ x與y相等
點P(x,y)在第二、四象限夾角平分線上→ x與y互為相反數
d、和座標軸平行的直線上點的座標的特徵
位於平行於x軸的直線上的各點的縱座標相同。
位於平行於y軸的直線上的各點的橫座標相同。
e、關於x軸、y軸或原點對稱的點的座標的特徵
點P與點p’關於x軸對稱橫座標相等,縱座標互為相反數,即點P(x,y)關於x軸的對稱點為P’(x,—y)
點P與點p’關於y軸對稱縱座標相等,橫座標互為相反數,即點P(x,y)關於y軸的對稱點為P’(—x,y)
點P與點p’關於原點對稱,橫、縱座標均互為相反數,即點P(x,y)關於原點的對稱點為P’(—x,—y)
f、點到座標軸及原點的距離
點P(x,y)到座標軸及原點的距離:
點P(x,y)到x軸的距離等於?y?
點P(x,y)到y軸的距離等於?x?
點P(x,y)到原點的距離等於√x2+y2
初二數學常考知識
一次函式
1、函式
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函式,其中x是自變數,y是因變數。
2、自變數取值範圍
使函式有意義的自變數的取值的全體,叫做自變數的取值範圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
3、函式的三種表示法及其優缺點
關係式(解析)法兩個變數間的函式關係,有時可以用一個含有這兩個變數及數字運算子號的等式表示,這種表示法叫做關係式(解析)法。
列表法把自變數x的一系列值和函式y的對應值列成一個表來表示函式關係,這種表示法叫做列表法。
圖象法用圖象表示函式關係的方法叫做圖象法。
4、由函式關係式畫其影象的一般步驟
列表:列表給出自變數與函式的一些對應值。
描點:以表中每對對應值為座標,在座標平面內描出相應的點。
連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連線起來。
5、正比例函式和一次函式
①正比例函式和一次函式的概念
一般地,若兩個變數x,y間的關係可以表示成y=kx+b(k,b為常數,k不等於0)的形式,則稱y是x的一次函式(x為自變數,y為因變數)。
特別地,當一次函式y=kx+b中的b=0時(k為常數,k不等於0),稱y是x的正比例函式。②一次函式的影象:
所有一次函式的影象都是一條直線。
③一次函式、正比例函式影象的主要特徵
一次函式y=kx+b的影象是經過點(0,b)的直線;