導數的幾何意義是什麼
對於可導函式,利用割線無限逼近切線,而割線斜率的極線即為切線的斜率,公式為:函式y=f(x) 在x=x0處的導數,f′(x0),表示曲線y=f(x)在點P(x0,f(x0))處的切線的斜率k。導數是微積分中的重要基礎概念。
導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。
計算已知函式的導函式可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函式都可以看作是一些簡單的.函式的和、差、積、商或相互複合的結果。只要知道了這些簡單函式的導函式,那麼根據導數的求導法則,就可以推算出較為複雜的函式的導函式。