傅立葉變換通俗理解

  傅立葉變換,表示能將滿足一定條件的某個函式表示成三角函式(正弦和/或餘弦函式)或者它們的'積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。

  傅立葉變換在物理學、電子類學科、數論、組合數學、訊號處理、機率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有著廣泛的應用(例如在訊號處理中,傅立葉變換的典型用途是將訊號分解成頻率譜——顯示與頻率對應的幅值大小)。

最近訪問