1.3 空間幾何體的表面積和體積測試題
1.3 空間幾何體的表面積和體積測試題
一、選擇題
1.(2010福建文)若一個底面是正三角形的三稜柱的正檢視如圖所示,則其側面積等於( ).
A. B.2 C. D.6
考查目的:考查立體幾何中的三檢視,識圖的能力、空間想象能力等基本能力.
答案:D.
解析:由正檢視知:三稜柱是以底面邊長為2,高為1的正三稜柱,∴底面積為,側面積為.
2.(2011遼寧文)一個正三稜柱的側稜長和底面邊長相等,體積為,它的三檢視中的俯檢視如圖所示,左檢視是一個矩形,則這個矩形的面積是( ).
A.4 B. C.2 D.
考查目的:考查立體幾何中的三檢視與幾何體的轉換以及相應線段的轉化關係.
答案:B.
解析:由俯檢視知該正三稜柱的直觀圖為下圖,其中M,N是中點,矩形為左檢視.
設稜長為,∵體積為,∴,解得,∴,∴矩形面積為.
3.(2011湖南文)如圖是某幾何體的三檢視,則該幾何體的體積為( ).
A. B. C. D.
考查目的:考查組合體體積的求解.
答案:D.
解析:由三檢視知這個幾何體由上面是一個直徑為3的球,下面是一個長、寬都為3,高為2的長方體所構成的幾何體,其體積
二、填空題
4.(2012上海文)一個高為2的圓柱,底面周長為,該圓柱的表面積為 .
考查目的:考查圓柱的'表面積.
答案:.
解析:∵底面圓的周長,∴圓柱的底面半徑,∴圓柱的側面積為,兩個底面積為,∴圓柱的表面積為.
5.(2009浙江)若某幾何體的三檢視(單位:)如圖所示,則此幾何體的體積是 .
考查目的:考查根據三檢視求幾何體體積.
答案:18.
解析:該幾何體是由二個長方體組成,下面體積為,上面的長方體體積為,因此其幾何體的體積為18.
6.(2011安徽)一個空間幾何體的三檢視如圖所示,則該幾何體的表面積為 .
考查目的:考查根據三檢視求幾何體表面積..
答案:.
解析:由三檢視可知本題所給的是一個底面為等腰梯形的放倒的直四稜柱(如圖所示),∴該直四稜柱的表面積為.
三、解答題:
7.(2011湖北改編) 設球的表面積為,體積為,它的內接正方體的表面積為,體積為,求,.
考查目的:考查球和正方體的表面積和體積計算,比較球和其內接正方體的表面積、體積之間的關係.
答案:,.
解析:設球的半徑為,則,.設正方體的邊長為,則,.又∵,∴ ,,即 ,.
8.已知:一個圓錐的底面半徑為,高為,在其中有一個高為的內接圓柱.
⑴求圓柱的側面積;
⑵為何值時,圓柱的側面積最大.
考查目的:考查幾何體的側面積的計算,考查對組合體的分析能力,空間想象能力及推理運算能力.
答案:⑴;⑵.
解析:⑴設內接圓柱底面半徑為,,∵,∴.②代入①得;
⑵,∴當時,.