雲計算技術在使用者用電智慧分析中的應用論文
雲計算技術在使用者用電智慧分析中的應用論文
摘 要: 社會進步和經濟發展的過程中, 國家生產活動不斷增加, 使用者的用電量也出現明顯的增長趨勢, 在此過程中, 多元化用電需求進一步增加, 因而新時期的供電要求不僅是滿足人們基本的生活、生產所需, 同時要求滿足保護環境和節能減排等要求。基於此需要對用於用電量、用電行為和用電方向等進行分析, 為功能供電服務提供科學借鑑, 同時對供電量和供電方向等進行合理調整。
關鍵詞: 雲計算; 用電; 智慧; 應用; 方法; 要點; 分析;
針對我國電量使用情況, 統計和分析使用者電量的使用資料, 在雲計算技術基礎上實行聚類演算法分析, 建立電荷分析模型, 深度發掘使用者型別, 為電網公司的供電計劃制定提供依據, 提高電力資源的使用效率和使用價值。
1、 雲計算技術與使用者用電智慧分析
1.1、 雲計算技術分析
現代網際網路技術和計算機技術的興起與發展促進雲計算技術的應用, 雲計算技術是在網際網路使用基礎上增加相關服務, 完成多種不同交付模式的使用, 在此過程中包括使用網際網路動態交易模式完成虛擬化資源的擴充套件。[1]電信網路中雲計算技術可以抽象化的表示底層基礎設施和網際網路, 應用雲計算技術能夠在短時間內完成較高億次運算, 使用者直接透過手機、筆記本和電腦等完成資料中心的接入, 按照實際需要進行相應資料的統計、分析和運算。雲計算技術在電網、天氣和核爆炸等領域具有極強的資料處理能力, 在一定的技術標準下, 雲計算技術應用是有用量劃分的付費模式的, 從而保證實用、便捷和適用的網路訪問服務, 計算資源在可配置的情況下能夠在共享池內被快速提供、提升。其中共享池資源型別主要包括服務、儲存、網路、軟體應用和伺服器等, 總體管理工作和服務供應商之間的互動較少。[2]
1.2、 使用者用電資料處理
國民經濟在快速增長過程中對電力資源的使用需求不斷加大, 電力系統接入關鍵裝置和技術後, 導致使用者電量使用的資料資訊量也加大。例如以電力資源家庭使用者為例, 歷史資訊資料內容包括小區門號、家庭住址、電錶號、抄電量日期、用電量等, 其中溫度、天氣和用電時長、家電類別等均屬於需要記錄和統計的資訊。在整合和分析使用者電量資料的基礎上可以根據電量指標建立起一個相對完善的資料表, 儲存使用者基本資訊, 結合使用者總用電量、電錶序號、裝置ID和用電時長等建立資料模型, 對使用者的用電行為、實際用電需求等進行分析。另外針對使用者用電情況, 可以在資料模型和資料庫應用基礎上完成個性化分析, 這其中需要綜合使用聚類演算法和雲計算技術, 劃分方法為經典的K-means法, 設計出框架圖。其中框架圖主要包括行為分析、資料採集和資料處理等模組內容, 在相應的模組內容中輸入使用者資料, 透過雲計算技術傳輸資訊, 完成最終的資料儲存和資料處理, 奠定後期的使用者用電行為分析基礎。[3]
2、 雲計算技術在使用者用電智慧分析中應用
2.1、 聚類演算法
在K-means法應用中主要的程式步驟是採集相關資料, 在聚類中心完成初始化處理, 需要注意的是, 聚類中心和計算的樣本點之間需要保證歐式聚類, 根據其類別在聚類計算中心重新完成運算。應用K-means演算法能夠進行較大規模的資料採集、開發和運算管理, 其運算過程邏輯嚴謹, 運算結果準確可靠, 兼具擴容能力強和運作高效的特點。由於雲計算技術的檔案系統和計算平臺屬於分散式, 完成資料庫資訊儲存後, 需要透過SQL介面完成資料分析, 總的運算階段包括資料集的模型輸入、中間集計算結果輸入和最終的層級合併階段。K-means計算中對應鍵歸類後需要保證相同值的輸入, 在資料重新標記中保證雲計算平臺內部檔案系統執行通暢, 演算法迭代直至收斂。
2.2、 權重計算
在聚類分析的基礎上需要在不同的資料集合中按照相似性原則搜尋資料物件, 計算相似資料的相似程度, 從某種程度上來說, 雲計算技術應用中的聚類分析演算法相當於相似性測演算法, 且這種測出的'相似度更加具有可信性和可行性, 資料形式較為新穎。[4]關於使用者用電智慧分析中採用雲計算技術可以對使用者基本資料資訊予以採集、儲存和管理, 對於資料庫中的用電峰值、谷電係數、平段百分比和負荷率等均可進行特徵比較。在此過程中對其進行權重計算需要將選取的特徵量建立向量矩陣, 計算特徵指標可以使用熵權法, 標準化處理權重矩陣。使用者用電量分析屬於一項系統性和複雜化的資料統計、分析工作, 應用雲計算技術實行資料量的權重計算要保證矩陣標準狀態計算出後與實際的用電資料分類相適應。
2.3、 資料分析和結果模擬
使用者用電量分析過程中需要完成基礎資料採集、分類和輸入工作, 在此過程中需要針對實際出現的使用者型別特徵對其用電行為進行基本劃分, 劃分類別名, 研究用電特徵。例如在小區使用者用電中, 常見的使用者類別包括空置房、老人、上班族、商用和老人加上班族結合模式。空置房總體用電量較低, 電量使用起伏不大;而老人由於年齡、生活活動特徵, 總體用電趨勢穩定, 下午用電較多, 晚上用電較少;上班族用電起伏大, 晚上用電較多;商用使用者用電量大, 幾乎沒有用電低谷和用電高峰之分;老人加上班族結合模式下屬於混合居住的家庭型別, 用電量較大。基於此, 在電量使用分析過程中應用雲計算技術需要對主要的使用者類別進行分類劃分, 建立資料模型、統一比較分析。[5]
3、 結語
電力資源在不同領域應用廣泛, 在傳統行業中電力資源的應用作用明顯, 但是使用者群體的劃分不同, 其用電方式以及電力資源價值體現也不同。雲計算技術在使用者用電智慧分析中, 能夠在資料平臺上針對多種不同的使用者類別和使用者特徵展開分析, 提高資料運算的效率和準確度。
參考文獻:
[1]莊緒強。基於雲計算技術的使用者用電智慧分析技術研究[J].自動化與儀器儀表, 2016, 02:187-189.
[2]朱國富, 張曉東, 閆書芳, 趙軍平。基於電力使用者用電資訊採集系統的智慧售用電管理系統的應用及技術[J].電測與儀表, 2015, S1:13-16
[3]秦振偉, 周雪松, 高志強, 周從容。雲計算技術在使用者側智慧變電站系統中的應用研究[J].天津科技, 2016, 09:67-70.