高中數學知識點課件:導數
高中數學知識點課件:導數
導數是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。以下是小編整理的資料,歡迎閱讀參考。
可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則。
(一)導數第一定義
設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函式取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f(x0) ,即導數第一定義
(二)導數第二定義
設函式 y = f(x) 在點 x0 的某個領域內有定義,當自變數 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函式變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時極限存在,則稱函式 y = f(x) 在點 x0 處可導,並稱這個極限值為函式 y = f(x) 在點 x0 處的導數記為 f(x0) ,即 導數第二定義
(三)導函式與導數
如果函式 y = f(x) 在開區間 I 內每一點都可導,就稱函式f(x)在區間 I 內可導。這時函式 y = f(x) 對於區間 I 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函式,稱這個函式為原來函式 y = f(x) 的.導函式,記作 y, f(x), dy/dx, df(x)/dx。導函式簡稱導數。
(四)單調性及其應用
1.利用導數研究多項式函式單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號 (3)若f(x)0在(a,b)上恆成立,則f(x)在(a,b)上是增函式;若f(x)0在(a,b)上恆成立,則f(x)在(a,b)上是減函式
2.用導數求多項式函式單調區間的一般步驟
(1)求f(x)
(2)f(x)0的解集與定義域的交集的對應區間為增區間; f(x)0的解集與定義域的交集的對應區間為減區間
學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。