北師大四年級下冊《三角形內角和》的教學設計範文(通用5篇)

北師大四年級下冊《三角形內角和》的教學設計範文(通用5篇)

  作為一名為他人授業解惑的教育工作者,就有可能用到教學設計,藉助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發展。教學設計要怎麼寫呢?下面是小編整理的北師大四年級下冊《三角形內角和》的教學設計範文(通用5篇),歡迎大家分享。

  北師大四年級下冊《三角形內角和》的教學設計1

  【教學目標】

  1、使學生知道三角形的內角和是180 ,並能運用三角形的內角和是180 解決生活中常見的問題。

  2、讓學生經歷量一量、折一折、拼一拼等動手操作的過程。透過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180 。

  3、培養學生自主學習、互動交流、合作探究的能力和習慣,培養學習數學的興趣,感受學習數學的樂趣。

  【教學重點】

  使學生知道三角形的內角和是180 ,並能運用它解決生活中常見的問題。

  【教學難點】

  透過多種方法驗證三角形的內角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

  【教學過程】

  一、激趣匯入,提煉學習方法

  1、課程開始,教師耳朵上彆著一根鉛筆,肩背大帆布兜子,裡面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學生面前。激發學生的好奇心。然後自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2、繼續以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3、選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那麼請聽好師傅的第二個問題。

  4、匯入新課。

  圖中有很多三角形,不論什麼樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

  二、動手操作,探索交流新知

  1、分組活動,探索新知

  根據學生的選擇把學生分成三組,分別採用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發給以下幾種學具:

  折一折組同學發給上面的三角形一組。

  拼一拼組同學發給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2、多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來彙報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急於糾正學生不正確的結論,因為這是知識的形成過程。)

  (3)請學生說說透過探究活動你們組得出的結論是什麼。

  師:大徒弟就是大徒弟,彙報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這麼小,方法可能是最好的。快來把你們的方法給大家彙報彙報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3、思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由於量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180 。(板書:三角形的內角和是180 )

  四、走進生活,提升運用能力

  1、出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2、給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經過三年的苦學,終於學有所成了。今天,能說說你們在我這裡都學到了什麼手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老。”你們下山後還要繼續探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

  大螢幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

  北師大四年級下冊《三角形內角和》的教學設計2

  一、教學目標

  1、知識目標:透過測量、撕拼(剪拼)、摺疊等方法,探索和發現三角形三個內角的度數和等於180°這一規律,並能實際應用。

  2、能力目標:培養學生主動探索、動手操作的能力。使學生養成良好的合作習慣。

  3、情感目標:讓學生體會幾何圖形內在的結構美。並充分體會到學習數學的快樂。

  二、教學過程

  (一)創設情境,匯入新課

  1、師:我們已經認識了三角形,你知道哪些關於三角形的知識?

  (學生暢所欲言。)

  2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎麼回事嗎?讓我們一起去看看吧!

  師口述:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,

  3、到底誰說的對呢?今天我們就來研究有關三角形內角和的知識。(板書課題:三角形內角和)

  (二)自主探究,發現規律

  1、認識什麼是三角形的內角和。

  師:你知道什麼是三角形的內角和嗎?

  透過學生討論,得出三角形的內角和就是三角形三個內角的度數和。

  2、探究三角形內角和的特點。

  ①讓學生想一想、說一說怎樣才能知道三角形的內角和?

  學生會想到量一量每個三角形的內角,再相加的方法來得到三角形的內角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,並鼓勵他們對自己想到的方法進行)

  ②小組合作。

  透過小組合作後交流,彙報。(教師同時板書出幾個小組彙報的結果)讓學生們發現每個三角形的內角和都在180°左右。

  引導學生推測出三角形的內角和可能都是180°。

  3、驗證推測。

  讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

  (小組合作驗證,教師參與其中。)

  4、全班交流,共同發現規律。

  當學生彙報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。

  學生交流、師生共同總結出三角形的內角和等於180°。教師同時板書(三角形內角和等於180°。)

  5、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什麼嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

  (三)鞏固練習,拓展應用

  根據發現的三角形的新知識來解決問題。

  1、完成“試一試”

  讓學生獨立完成後,集體交流。

  2、遊戲:選度數,組三角形。

  請選出三個角的度數來組成一個三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學生回答的同時,教師操作課件,把學生選擇的度數拖入方框內,透過電腦計算相加是否等於180°,來驗證學生的選擇是否正確。驗證學生選的對了以後,再讓學生判斷選擇的度數所組成的三角形按角的大小分類,屬於哪種三角形。並說出理由。

  3、“想想做做”第1題

  生獨立完成,集體訂正,並說說解題方法。

  4、“想想做做”第2題

  提問:為什麼兩個三角形拼成一個三角形後,內角和還是180度?

  5、“想想做做”第3題

  生動手摺折看,填空。

  提問:三角形的內角和與三角形的大小有關係嗎?三角形越大,內角和也越大嗎?

  6、“想想做做”第5題

  生獨立完成,說說不同的解題方法。

  7、“想想做做”第6題

  學生說說自己的想法。

  8、思考題

  教師拿一個大三角形,提問學生內角和是多少?用剪刀剪成兩個三角形,提問學生內角和是多少?為什麼?再剪下一個小三角形,提問學生內角和是多少?為什麼?最後建成一個四邊形,提問學生內角和是多少?你能推導

  出四邊形的內角和公式嗎?

  (四)課堂總結

  本節課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇於從事實中尋找規律,再將規律運用到實踐當中去。

  三教後反思:

  “三角形的內角和”是小學數學教材第八冊“認識圖形”這一單元中的一個內容。透過鑽研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:

  1、透過測量、撕拼、摺疊等方法,探索和發現三角形三個內角的度數和等於180度。

  2、已知三角形兩個角的度數,會求出第三個角的度數。

  本節教學是在學生在學習“認識三角形”的基礎上進行的,“三角形內角和等於180度”這一結論學生早知曉,但為什麼三角形內角和會一樣?這也正是本節課要與學生共同研究的問題。所以我將這節課教學的重難點設定為:透過動手操作驗證三角形的內角和是180°。教學方法主要採用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結合自己的教學,談幾點體會。

  (一)創設情景,激發興趣

  俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短几分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學內容和學生實際,精心設計每一節課的開頭導語,用別出心裁的導語來激發學生的學習興趣,讓學生主動地投入學習。本節課先創設畫角質疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什麼又不知怎麼說,學生探究的興趣因此而油然而生。

  (二)給學生空間,讓他們自主探究

  “給學生一些權利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛鍊;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創設有助於學生自主探究的機會,透過“想辦法驗證三角形內角和是180度”這一核心問題,引發學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生透過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。這樣,學生在經歷“再創造”的過程中,完成了對新知識的構建和創造。

  (三)以學定教,注重教學的有效性

  新課表指出:數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。要把學生的個人知識、直接經驗和現實世界作為數學教學的重要資源,即以學定教,注重每個教學環節的有效性。本課中當我提出“為什麼一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向於長方形或正方形。“為什麼會這樣呢”?學生沉默片刻後,忽然有個學生舉手了:“因為三角形的內角和是180度,兩個直角已經有180度了,所以不可能有兩個角是直角。”這樣的回答把本來設計的教學環節打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎麼知道內角和是180度、誰都知道三角形的內角和是180度”等,當我看到大多數的已經知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度。”激發了學生探究的興趣,使學生馬上投入到探究之中。

  在練習的時候,由於形式多樣,所以學生的興趣非常高漲,效果很好。透過多邊形內角和的思考以及驗證,發展了學生的空間想象力,使課堂的知識得以延伸。

  北師大四年級下冊《三角形內角和》的教學設計3

  教學目標:

  1、讓學生透過量、剪、拼、折等活動,主動探究推匯出三角形內角和是180度,並運用所學知識解決簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。並透過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透"轉化"數學思想。

  3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

  教學重點:

  讓學生經歷"三角形內角和是180°"這一知識的形成、發展和應用的全過程。

  教學難點:

  透過小組內量一量、折一折、撕一撕等活動,驗證"三角形的內角和是180°。"

  教師準備:

  4組學具、課件

  學生準備:

  量角器、練習本

  教學過程:

  一、興趣匯入,揭示課題

  1、匯入:"同學們,這幾天我們都在研究什麼知識?能說說你們都認識了哪些三角形嗎?它們各有什麼特點?"

  (生出示三角形並彙報各類三角形及特點)

  2、今天老師也帶來了兩個三角形,想不想看看?(播放大螢幕)。"咦,不好,它們怎麼吵起來了?快聽聽它們為什麼吵起來了?""哦,它們為了三個內角和的大小而吵起來。"(設定矛盾,使學生在矛盾中去發現問題、探究問題。)

  3、我們來幫幫它們好嗎?

  4、那麼什麼叫內角啊?你們明白嗎?誰來說說?來指指。

  你能標出三角形的三個角嗎?(生快速標好)

  數學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節課我們就來研究一下"三角形的內角和"(課件片頭1)

  "同學們,用什麼方法能知道三角形的內角和?"

  二、猜想驗證,探究規律 (動手操作,探究新知)

  1、量角求和法證明:

  先聽合作要求:拿出準備的一大一小的兩個三角形,現在我們以小組為單位來量一量它們的內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?

  (1)學生聽合作要求後分組合作,將各種三角形的內角和計算出來並填在小組活動記錄表中。(觀察哪組配合好)。

  (2)指名彙報各組度量和計算內角和的結果。

  (3)觀察:從大家量、算的結果中,你發現什麼?

  歸納:大家算出的三角形內角和都等於或接近180°。

  (5)思考、討論:

  透過測量計算,我們發現三角形的內角和不一定等於180度,因為是測量所以能有誤差,那麼還有更好的方法能驗證呢?

  大家討論討論。

  現在各小組就行動起來吧,看哪些小組的方法巧妙。看看能得出什麼結論?

  看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。

  看老師最終把三個角拼成了一個什麼角?平角。是多少角?

  "180°是一個什麼角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?"(課件3)

  現在,我們可驗證三角形的內角和是(180度)?

  2、那麼對任意三角形都是這個結論?請看大螢幕。

  演示銳角三角形折角。 (三個頂點重合後是一個平角,摺好後是一個長方形。)

  你們想不想去試一試。

  1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學生)

  2、"你透過哪種三角形驗證(鈍角、銳角、直角逐一彙報)",生邊出示三角形邊彙報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示範,可隨機改變順序)

  a、驗證直角三角形的內角和

  折法1中三個角拼在一起組成了一個什麼角?我們可以得出什麼結論?

  引導生歸納出:直角三角形的內角和是180°

  折法2 我們還可以得出什麼結論?

  引導生歸納出:直角三角形中兩個銳角的和是90°。

  (即:不必三個角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)

  b、驗證銳角、鈍角三角形的內角和。

  歸納:銳角、鈍角三角形的內角和也是180°。

  放手發動學生獨立完成 ,逐一種類彙報 師給予鼓勵

  三、總結規律

  剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大小!我們可以得出一個怎樣的結論?

  (三角形的內角和是180°。)

  (教師板書:三角形的內角和是180°學生齊讀一遍。)

  為什麼用測量計算的方法不能得到統一的結果呢?

  (量的不準。有的量角器有誤差。)

  老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

  四、應用新知,知識昇華。

  (讓學生體驗成功的喜悅)

  現在,我們已經知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?

  (課件5……)

  在一個三角形中,有沒有可能有兩個鈍角呢?

  (不可能。)

  追問:為什麼?

  (因為兩個銳角和已經超過了180°。)

  有兩個直角的一個三角形

  (因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大於180°。)

  問:那有沒有可能有兩個銳角呢?

  (有,在一個三角形中最少有兩個內角是銳角。)

  1、 看圖求出未知角的度數。(知識的直接運用,數學資訊很淺顯)

  2、做一做:

  在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數、

  3、27頁第3題(數學資訊較為隱藏和生活中的實際問題)

  4.思考題、

  五、總結

  今天,我們在研究三角形的內角和時經歷了猜想、驗證、得出結論的過程,並且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經歷這樣的'過程,同時,它也是一種科學的研究方法。

  板書設計:

  三角形內角和

  量一量 拼一拼 折一折

  三角形內角和是180°

  北師大四年級下冊《三角形內角和》的教學設計4

  【教材分析】

  《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特徵之後進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生透過測量、摺疊、拼湊等方法,發現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數,求出第三個角的度數。

  【學生分析】

  經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發表自己的見解,對數學產生了濃厚的興趣。1、知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2、能力方面:已具備了初步的動手操作能力和探究能力,並且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內角和是180度這一規律,並能實際應用。

  能力目標: 培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納資訊的能力。使學生養成良好的合作習慣。

  情感目標: 讓學生體會幾何圖形內在的結構美。

  【教學過程】

  一、 情景激趣,質疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭裡為“三角形內角和的大小”爆發了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大。”銳角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和並不比你小。”直角三角形說:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的。”

  師:想一想,什麼是三角形的三個內角的和。

  生:三角形的三個內角的度數和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,自由發言。

  (設計意圖:教師藉助多媒體技術創設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋樑,激發了學生的學習興趣。鼓勵學生主動質疑猜想是培養學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內角和度數,加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往裡折,看一看這三個角是否折成一個平角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

  學生邊實驗邊整理資訊,完成實驗報告單後,學習小組內進行交流討論。

  (設計意圖:驗證猜想為學生提供了“做數學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生髮展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創新能力的發展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單後,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內角和

  實驗目的

  探究三角形內角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發現

  我的表現

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發現,教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內角和等於180°

  (設計意圖:各學習小組彙報自己的驗證過程,展示探究的成果。對學生探索發現的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創新。

  ①課件出示:

  師:這個三角形是什麼三角形?知道幾個內角的度數?

  生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。

  師:根據今天所學的知識,誰能求出A的度數?大家自己試一試。

  學生做完後反饋講評時讓學生說說自己的方法。

  生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

  ②學生完成完成P29的第一題。

  引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

  ③猜一猜三角形的另外兩個角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

  ④小組操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,並填一填。

  方 法

  四邊形內角和

  用量角器量出每個內角的度數,並相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表後讓學生想一想、互相說一說,四邊形內角和是多少度?

  (設計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用於探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養動手能力、實踐能力和創新思維。)

  北師大四年級下冊《三角形內角和》的教學設計5

  【教學目標】

  1、學生動手操作,透過量、剪、拼、折的方法,探索並發現“三角形內角和等於180度”的規律。

  2、在探究過程中,經歷知識產生、發展和變化的過程,透過交流、比較,培養策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發求知慾和探索興趣。

  【教學重點】探究發現和驗證“三角形的內角和180度”這一規律的過程,並歸納總結出規律。

  【教學難點】對不同探究方法的指導和學生對規律的靈活應用。

  【教具準備】課件、表格、學生準備不同型別的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那麼,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩定效能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什麼?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那麼,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼於黑板。

  3、激發學生探知心裡

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什麼畫不出來呢?這就是三角形中角的奧秘!這節課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)

  二、探究新知。

  1、認識三角形的內角

  看看這三個字,說說看,什麼是三角形的內角?

  生:就是三角形裡面的角。

  師:三角形有幾個內角啊?

  生:3個。

  師:那麼為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什麼是三角形“內角和”嗎?

  生:三角形裡面的角加起來的度數。

  2、研究特殊三角形的內角和

  師:分別拿出一個直角三角板,請同學們看看這屬於什麼三角形,說出每個角的度數,那這個三角形的內角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什麼角?

  生:平角

  師:從剛才兩個三角形的內角和的計算中,你發現了什麼?

  3、研究一般三角形的內角和

  師:猜一猜,其它三角形的內角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎麼辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同型別的三角形,每種型別都需要驗證,先討論一下,怎樣才能較快的完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組彙報測量結果。

  生:透過測量我們發現每個三角形的三個內角和都在180度左右。

  師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰願意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

  現在老師問同學們,三角形的內角和是多少?

  生:180度。

  師:透過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等於180度。現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節課的知識解釋一下為什麼畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大於180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內角和是()度。

  (2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數。(多媒體出示)

  對學生進行思品教育。

  5、思考延伸。

  根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

  6、遊戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°、90°、45°、30°、60°、90°、45°、30°、54°、46°、52°

  五、總結。

最近訪問