《列方程解決問題》教學反思

《列方程解決問題》教學反思

  身為一位到崗不久的教師,教學是重要的工作之一,我們可以把教學過程中的感悟記錄在教學反思中,那麼問題來了,教學反思應該怎麼寫?以下是小編幫大家整理的《列方程解決問題》教學反思,僅供參考,歡迎大家閱讀。

《列方程解決問題》教學反思1

  這節課學習的是列方程解決行程問題中的相遇問題,學生基本對列方程解答實際問題的思路、方法步驟已經熟悉,解各種方程也熟練,現在我們主要解決的是如何分析相遇問題的數量關係,這是本節課的關鍵。但關於行程問題,學生學習過一步解法,知道速度×時間=路程,但兩人有關的行程問題較難,比較抽象,學生不易理解,這節課是相遇問題的基礎,其拓展的問題會比較多,且更難。我從學生實際出發,並利用實際行動展現,逐步引導學生探究。

  一、複習等量關係,做好鋪墊。

  學生已學習了一人行走的行程問題解答方法,我上課開始,舉例一步問題,讓學生解答,並說出等量關係。同時改變問題,問等量關係。使學生進一步熟悉行程問題的解答依據。

  二、學生上臺展示,變抽象為直觀。

  相遇問題比較抽象,我讓兩名學生上臺走路,現場照題目要求直觀演示。為了讓學生觀察清楚,也為了更好地貼合問題,直觀展示,我特地喊口令,讓兩學生依口令一秒一秒走,並掌握步幅大小,保證三秒相遇:第一秒,你兩步,我三步;第二秒,第三秒相遇。

  理解了題意,問題來了,兩學生同時走,到相遇,時間有什麼關係?(相等),這段路程幾人走完的?總路程怎麼計算?透過提問,發現有學生模糊,剛才關注點和問題脫鉤,於是剛才演示的兩名同學再次演示,這次學生帶著問題觀察,問題逐一解答。

  三、畫線段圖,幫助學生建構模型思想對走路演示,學生銘刻在心,腦中有相遇問題的全過程和細節,如兩人的時間啦,哪一段路程誰走的?相遇點會靠近誰?等等。首先要求:已知條件要全部表明,連同單位,問題也要標註。師生一步一步,共同完成線段圖畫法,把心中的理解都畫出來。再次直觀展示,使學生對相遇問題有了更清楚的認識,幫助學生建構相遇問題的模型思想,兩人共同走完,即甲的路程+乙的路程=總路程。同時兩人時間相等,即:速度和×相遇時間=總路程。學生很快列出方程解答。

  數學實際問題往往比較抽象,老師需藉助各種手段,想方設法變抽象為直觀,幫助學生更好理解實際問題。

《列方程解決問題》教學反思2

  列方程解決問題是在學生掌握瞭解方程的方法並且能夠根據圖式列方程並計算的基礎上進行教學的。在這一章節內容中包含用方程解簡單的實際問題,也包含用方程解複雜問題。

  成功之處:

  學生在學習中最大的困難是如何正確找到等量關係的問題。因此,在教學中,我首先透過例1的教學讓學生明確一個數比另一個數多(少)幾可以得出如下等量關係:一個數=另一個數+幾(或-幾)

  一個數-另一個數=多幾(少幾)

  還透過練習中出現的倍數之間的關係如一個數是另一個數的幾倍得出如下等量關係:幾倍量÷一倍量=倍數一倍量×倍數=幾倍量

  單價×數量=總價總價÷單價=數量總價÷數量=單價

  速度×時間=路程路程÷速度=時間路程÷時間=速度

  在例2的教學中透過一個數比另一個數的幾倍多幾(少幾)讓學生自己得出等量關係:幾倍量=一倍量×倍數+多幾(或-少幾)

  在例3的教學中透過找兩個量的和(或差)得出等量關係,如梨的價錢+蘋果的價錢=總錢數一個量-另一個量=相差數

  在例4的教學中,是比較典型的倍數和(差)問題,可以根據例3的方法去尋找等量關係。

  在例5的教學中,是典型的相遇問題,其等量關係既可以根據例3的方法尋找,也可以採用速度和×時間=路程速度差×時間=路程之差

  不足之處:

  在練習中出現個別學生找不到有關等量關係的資訊,導致無法正確列出方程。

  再教設計:

  在之前的算術法教學中,也應強調等量關係,這樣學習方程的時候,學生不至於感覺有難度。

《列方程解決問題》教學反思3

  1、請學生估計一下,我們的教學樓有多高?(學生回答大概12米,有的說10米)板書:10米。

  2、出題:教學樓的高度比後面專用教室的高度的3倍還多1米?你們知道後面的教學樓大概有多高?

  討論:教學樓的高度和後面專用教室的高度有什麼關係?

  生1:教學樓的高度是後面專用教室的高度的3倍還多1米

  生2:教學樓的高度比後面專用教室的高度的3倍多

  生3:教學樓的高度比後面專用教室的高度高得多。

  2、 啟發:教學樓的高度和後面專用教室的高度是不相等的,你能找出他們之間的相等的數量關係嗎?

  學生交流討論:

  生4:10米減去1米,再除以3,等於3米。檢驗一下是對的。

  生5;後面專用教室的高度*3+1米=10米

  3、 列方程

  4、 解方程

  反思:

  列方程應用題大概步驟大家都知道:是在順向思維的基礎上,找出相等的數量關係,設出未知數列出方程,然後進行解方程。其重點是列方程,難點是找出相等的數量關係。本節課也真是在這樣的思路下進行教學的。有幾個體會值得注意:1、為什麼要列方程來解題,學生不知所以然,其實正如上面的'生4的回答。也是可以的,但用方程可以降低思維的難度,為今後的代數打好底子。2、本節課教材上的內容比較簡單,是西安的大雁塔和小雁塔的高度比較,和我的舉例差不多。在傳統的教學中我們通常用線段圖等形象的方法幫助學生理解題目中的相等關係。在今天的課堂上我沒有涉及。在讓學生找相等的數量關係時我給學生示範了一個文字分析法,比如:分析教學樓的高度比後教室的高度的3倍還多1米這句話,就可以這樣轉換成數學語言 教學樓的高度比後面專用教室的高度的3倍還多1米

  就是教學樓的高度=後教室的高度*3倍還+1米或者等號兩邊對調:

  後教室的高度*3倍還+1米 =教學樓的高度

  這樣的效果果然很好,起碼讓學生怎麼找數量間的相等關係。只是覺得後進生可能會不動腦筋,只會望文生義,沒有真正弄懂數量關係。3、本節課還有一個不容忽視的地方就是要讓學生養成勤於檢驗的好習慣。

最近訪問