種群數量的變動教案範文
種群數量的變動教案範文
一、教學目標
1.說明建構種群增長模型的方法。
2.透過探究培養液中酵母菌種群數量的變化,嘗試建構種群增長的數學模型。
3.用數學模型解釋種群數量的變化。
4.關注人類活動對種群數量變化的影響。
二、教學重點和難點
1.教學重點
嘗試建構種群增長的數學模型,並據此解釋種群數量的變化。
2.教學難點
建構種群增長的數學模型。
三、教學設想
首先,教師要領會和把握好本節的教學要旨。課程標準關於本節的具體內容標準為“嘗試建立數學模型解釋種群的數量變動”,並提出了相應的活動建議“探究培養液中酵母種群數量的動態變化”。顯然,引導學生用數學方法解釋生命現象,揭示生命活動規律是本節教學策略的著眼點。
其次,教師應對數學模型及其教育價值有一個基本的認識。數學模型是聯絡實際問題與數學的橋樑,具有解釋、判斷、預測等重要功能。在科學研究中,數學模型是發現問題、解決問題和探索新規律的有效途徑之一。引導學生建構數學模型,有利於培養學生透過現象揭示本質的洞察能力;同時,透過科學與數學的整合,有利於培養學生簡約、嚴密的思維品質。
再次,在教學中,可以循著現象→本質→現象,或者具體→抽象→具體的思路,透過分析問題→探究數學規律→解決實際問題→建構數學模型的方法,讓學生體驗由具體到抽象的思維轉化過程。
四、教學方法
探究—討論法
五、教學過程:
學生活動 教師的組織和引導 教學意圖
學生基於已有的數學知識進行演算。 播放細菌分裂的錄影或演示細菌分裂的計算機模擬動畫。
提示:在自然界中細菌無處不在,有些細菌的大量繁殖會導致疾病。假如現有一種細菌,在適宜的溫度、溼度等環境下,每20min左右透過分裂繁殖一代。
引導學生思考:
1.細菌的生殖方式是怎樣的?
2.72h後,由一個細菌分裂產生的後代數量是多少?
3.n代細菌數量是多少? 透過創設具體的情境,讓學生感受活生生的生命現象。
認識細菌種群數量增長的數學規律。
學生討論,充分陳述自己的觀點。 提出問題,組織討論:
1.對細菌種群數量增長而言,在什麼情況下2n公式成立?
2.這個公式揭示了細菌種群數量增長的什麼規律?
3.在學過的生物學內容中,還有哪些生物學問題可以用數學語言來表示。
提示:數學工具在生物學研究中的作用越來越突出。 用數學語言揭示生物學問題時,要充分考慮到生物學自身的特點。
認識到在生物學中有許多現象和規律可以用數學語言來表示。
學生獨立操作完成圖表,相互交流結果。 請學生算出一個細菌產生的後代在不同時間的數量,並填寫教材中的表格,然後畫出細菌的種群數量增長曲線。
提示:這是在理想條件下對細菌種群數量的推測。
引導學生討論,同數學公式相比,曲線圖表示的模型有什麼侷限性? 認識種群數量增長模型的另一種表現形式。
小結:在描述、解釋和預測種群數量的變化時,常常需要建立數學模型。數學模型的表現形式可以為公式、圖表等。
學生討論建立“培養液中酵母菌種群數量的數學模型”的方案:程式和方法。 提出問題,組織討論:如何建立“培養液中酵母菌種群數量的數學模型”,我們應該怎麼做? 結合本節的探究實驗,認識建立種群增長模型的程式和方法。
學生討論:
1.野兔種群增長的原因有哪些?
2.怎樣用數學語言來描述野兔種群增長的規律?
3.如果用N0表示野兔種群的起始數量,用λ表示野兔種群數量每年的增長倍數,用Nt表示t年後野兔種群的數量,那麼,Nt為多少?
4.根據上述素材,估算1869年時,野兔種群數量為多少?(說明計算方法)
5.列舉在自然界中還有哪些與素材中野兔種群數量增長相類似的情況。 提出問題,組織討論:以上討論的是在實驗條件下種群的數量變化,在自然界中種群的數量變化情況如何?
提供素材:《光明日報》訊息
澳大利亞野兔成災。估計在這片國土上生長著6億隻野兔,它們與牛羊爭牧草,啃樹皮,造成大批樹木死亡,破壞植被導致水土流失,專家計算,這些野兔每年至少造成1億美元的財產損失。兔群繁殖之快,數量之多足以對澳洲的生態平衡產生威脅。
澳洲本來沒有兔子,1859年,一個叫托馬斯奧斯汀的英國人來澳定居,帶來了24只野兔,放養在他的莊園裡,供他打獵取樂。奧斯汀絕對沒有想到,一個世紀之後,這24只野兔的後代達到6億隻之多。(有條件的`學校,教師可播放澳大利亞野兔成災的錄影片。) 透過具體例項,加深對數學模型的理解,並用數學語言解釋種群數量增長的規律。
明確“J”型種群增長的原因。
小結:自然界確有類似細菌在理想條件下種群數量增長的形式。該種群數量增長的數學模型可表示為“J”型曲線,或數學公式:
Nt=NOλt
學生思考:有哪些因素制約著種群數量的增長?
學生討論。 如果自然界的生物種群都是以“J”型方式增長,地球早就無法承受了。
呈現高斯實驗(有條件的學校可將高斯實驗用計算機模擬技術呈現出來)。
提出討論題:
1.你認為高斯得出種群經過一定時間的增長後,呈“S”型曲線的原因是什麼?
2.在高斯實驗的基礎上,如果要進一步搞清是空間的限制,還是資源(食物)的限制,該如何進行實驗設計?
3.如何理解K值的前提條件“在環境條件不受破壞的情況下”?請舉例說明。 從資源和空間上思考種群增長問題。
用生物學語言解釋“S”型曲線(數學模型)。
培養實驗設計能力。
學生討論教材中“思考與討論”素材。 小結:經過一定時間,在各種因素的作用下,種群數量增長會趨於穩定,呈“S”型曲線。在環境條件不受破壞的情況下,一定空間中所能維持的種群最大數量稱為“環境容納量──K值”。 理解K值,並解釋和說明實際問題。
學生討論教材中東亞飛蝗種群數量的波動。討論影響種群數量波動的因素。 提出問題:在自然界中,種群數量是否總能穩定在K值?為什麼? 從多因素思考種群數量的變化?
總結:
從具體的生物現象與規律建立抽象的數學模型,又用抽象的數學模型來解釋具體的生物學現象與規律,這是學習本節的要旨。 把握學習方法要旨。
教後感:
數學模型在生物學中也越來越表現出強大的生命力,它透過建立可以表述生命系統發展狀況等的數學系統,對生命現象進行量化,以數量關係描述生命現象,再運用邏輯推理、求解和運算等達到對生命現象進行研究的目的。注重培養學生各學科之間的聯絡。