人教版六年級數學上冊第三單元《倒數的認識》教案(一)

人教版六年級數學上冊第三單元《倒數的認識》教案(一)

  作為一名默默奉獻的教育工作者,時常會需要準備好教案,教案是教學藍圖,可以有效提高教學效率。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的人教版六年級數學上冊第三單元《倒數的認識》教案(一),僅供參考,歡迎大家閱讀。

  教學目標:

  1、使學生理解倒數的意義,掌握求不同種類數的倒數的方法,並能發現一些規律。

  2、培養學生的分析、推理、判斷等思維能力,發展學生的思維。

  教學重點:理解倒數的意義,會求不同種類數的倒數。

  教學難點:熟練正確的求小數、帶分數的倒數,發現不同種類數的倒數的一些特徵。

  教學過程設計:

一、激發興趣,揭示課題。

  1、(投影)這節課老師就要把這裡面的奧秘告訴你們,相信你們得知後比老師說得還快。

  2、同學們認真觀察這些算式,你有什麼發現?

  板書:乘積是1的兩個數

  3、你能很快說出乘積是1的兩個數嗎?你為什麼說的這麼快?有什麼竅門?

  板書:分子、分母顛倒位置

  4、起名。(師指著分子、分母顛倒位置的兩個分數)你能給這樣的兩個分數起個名嗎?

  5、根據學生的評價,引出“倒數”一詞,板書課題。

  (設計說明:透過師生比賽“看誰填得快”這一情境的創設,激發了學生的學習興趣和強烈的探究慾望。讓學生很快說出乘積是1的兩個數,並說說有什麼竅門,目的是讓學生初步感受互為倒數的兩個數的特徵,即分子、分母顛倒位置。此時讓學生給倒數起名,已是水到渠成,同時也讓學生獲得了積極的情感經驗。)

  二、探究新知

  (一)教學倒數的意義

  1、你能根據自己的理解說說怎樣的兩個數叫互為倒數嗎

  學生此時回答有兩種可能:一種是乘積是1的兩個數互為倒數,一種是分子、分母顛倒位置的兩個數互為倒數。

  3、注重學生的評價,引出並板書倒數的意義:乘積是1的兩個數互為倒數。

  4、進一步理解意義:在倒數的意義中,你認為哪幾個字比較重要?你是怎麼理解“互為”一詞的?請舉例說明。

  5、(投影)辨析:下面的說法對嗎?為什麼?

  (1)、是倒數。()

  (2)、得數為1的兩個數互為倒數。()

  (設計說明:讓學生根據自己的理解說說怎樣的兩個數叫互為倒數,並找出概念中的關鍵詞語,舉例說明對“互為”一詞的理解,處處無不顯示出學生是學習活動中的主體,教師是學習活動中的組織者和引導者。)

  (二)教學倒數的求法

  1、透過剛才的學習,我們已經知道了什麼是倒數。那你會求一個數的倒數嗎?你會求什麼數的倒數呢?怎麼求的?能舉例說明嗎?

  生:我會求分數的`倒數,如,把分子、分母顛倒位置就是,所以的倒數是。

  師:是個真分數,這位同學求的是一個真分數的倒數,還有誰能說出幾個真分數的倒數的?(師板書三、四個例子)

  (設計說明:透過“你會一個數的倒數嗎?你會求什麼數的倒數?”這一問題,激起了學生思維的漣漪。此時,同學們首先想到的是求一個分數的倒數,教師強調求的是一個真分數的倒數,並讓學生再舉幾個例子,目的是為了後面讓學生髮現不同種類數的倒數的特徵做準備。)

  師:真分數有什麼特點?那真分數的倒數有什麼特徵?

  板書:真分數的倒數都大於1。

  2、求假分數的倒數,研究假分數的倒數的特徵。

  師:你還會求什麼數的倒數?怎麼求的?能舉例說明嗎?

  生舉三、四個例子。師板書。

  師:假分數有什麼特點?假分數的倒數有什麼特徵呢?

  組織學生討論、交流。

  板書:假分數的倒數都大於或等於1。

  4、求整數的倒數,討論“0”和“1”的倒數。

  繼續問“你還會求什麼數的倒數?”當學生說會求整數的倒數時,讓學生舉幾個例子說說怎麼求的。

  師:“1”也是整數,誰會求“1”的倒數的?怎麼想的?

  板書:1的倒數還是1。

  師:有沒有哪個整數的倒數你不會求的呢?

  組織學生討論:0為什麼沒有倒數?

  師:仔細觀察:整數的倒數有什麼特徵?

  板書:非0、非1的整數的倒數都是分數單位。

  追問:那分數單位的倒數呢?(都是整數)

  5、求小數、帶分數的倒數。

  師:你還會求什麼數的倒數?怎麼求的?能舉例說明嗎?

  學生的回答有兩種可能:一是求小數的倒數;二是求帶分數的倒數。

  (1)、讓學生討論如何求小數的倒數。

  學生會想出兩種求法:第一種:把小數化成分數,再顛倒分子、分母的位置,繼而求出倒數;第二種:根據倒數的意義,用1除以這個小數。

  引導比較兩種求法,得出第一種方法比較通用。

  (2)、讓學生討論如何求帶分數的倒數。

  (3)出示幾個小數(0.15、2.5、1.25等)和幾個帶分數讓學生求出它們的倒數。

  (設計說明:人的思維活動往往由簡單到複雜的,小學生更是這樣。所以在老師提出“你會求什麼數的倒數時”,他們首先想到的是怎樣求一個分數的倒數,然後在考慮整數的倒數的求法,最後想到小數、帶分數倒數的求法。這樣層層深入,絲絲入扣,有效的突出了重點,突破了難點。教師教得輕鬆,學生學得興趣昂然。)

  (三)學生自行總結求倒數的方法。

  板書:求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。

  三、鞏固練習

  1、呼應開頭。現在你知道老師為什麼填的這麼快了嗎?誰願意在和老師比一次。(投影出示複習題)

  2、下面哪兩個數互為倒數?(做練習六第二題)

  3、辨析(用手勢判斷對錯).投影出示練習六第5題。

  4、誰會填?

  (1)×()= ×( )=3×( )=025×( )

  (2)×()= ÷()= +()= -()

  師:你是根據什麼填的?

  (設計說明:練習設計,力求紮實而質樸,平淡中透新意.開放題的設計,給學生廣闊的思維空間,學生綜合運用已學知識解決問題,讓課堂教學既有“深度”,又有“溫度”。)

  四、反思

  這節課你有什麼收穫?印象最深的是什麼?

  (設計說明:透過回顧,引導學生對本節課學到的知識和方法進行總結,讓學生親身感受到數學學習是有意義的。)

  五、課後作業

  練習六第6、7題。

最近訪問