關於微波電子順磁共振實驗報告範文
關於微波電子順磁共振實驗報告範文
篇一:電子順磁共振 實驗報告
一、實驗目的
1. 學習電子順磁共振的基本原理和實驗方法;;
2. 瞭解、掌握電子順磁共振譜儀的調節與使用;
3. 測定DMPO-OH 的EPR 訊號。
二、實驗原理
1.電子順磁共振(電子自旋共振)
電子自旋共振(Electron Spin Resonance, ESR)或電子順磁共振(Electron Paramagnanetic Resonance,EPR),是指在穩恆磁場作用下,含有未成對電子的原子、離子或分子的順磁性物質,對微波發生的共振吸收。1944年,蘇聯物理學家扎沃伊斯基(Zavoisky)首次從CuCl2 、MnCl2等順磁性鹽類發現。電子自旋共振(順磁共振)研究主要物件是化學自由基、過渡金屬離子和稀土離子及其化合物、固體中的雜質缺陷等,透過對這類順磁物質電子自旋共振波譜的觀測(測量因子、線寬、弛豫時間、超精細結構引數等),可瞭解這些物質中未成對電子狀態及所處環境的資訊,因而它是探索物質微觀結構和運動狀態的重要工具。由於這種方法不改變或破壞被研究物件本身的性質,因而對壽命短、化學活性高又很不穩定的自由基或三重態分子顯得特別有用。近年來,一種新的高時間分辨ESR技術,被用來研究鐳射光解所產生的瞬態順磁物質(光解自由基)的電子自旋極化機制,以獲得分子激發態和自由基反應動力學資訊,成為光物理與光化學研究中瞭解光與分子相互作的一種重要手段。電子自旋共振技術的這種獨特作用,已經在物理學、化學、生物學、醫學、考古等領域得到了廣泛的應用。
2.EPR基本原理
EPR 是把電子的自旋磁矩作為探針,從電子自旋磁矩與物質中其它部分的相互作用導致EPR 譜的變化來研究物質結構的,所以只有具有電子自旋未完全配對,電子殼層只被部分填充(即分子軌道中有單個排列的電子或幾個平行排列的電子)的物質,才適合作EPR 的研究。不成對電子有自旋運動,自旋運動產生自旋磁矩, 外加磁場後,自旋磁矩將平行或反平行磁場方向排列。經典電磁學可知,將磁矩為μ的小磁體放在外磁場H 中,它們的相互作用能為:
E=-μ· H = -μH cosθ
這裡θ為μ與H 之間的夾角,當θ= 0 時,E = -μH, 能量最低,體系最穩定。θ=π時,E=μH,能量最高。如果體系從低能量狀態改變到高能量狀態,需要外界提供能量;反之,如果體系由高能量狀態改變為低能量狀態,體系則向外釋放能量。
根據量子力學,電子的自旋運動和相應的磁矩為:
μs=-gβS
其中S 是自旋算符,它在磁場方向的投影記為MS, MS 稱為磁量子數,對自由電子的MS 只可能取兩個值,MS=±1/2, 因此,自由電子在磁場中有兩個不同的能量狀態,相應的能量是:
E±=±(1/2)geβH
記為: Eα= +(1/2)geβH
Eβ= -(1/2)geβH
式中Eα代表自旋磁矩反平行外磁場方向排列,能量最高;Eβ代表平行外磁場方向排列,能量最低。但當H=0 時,Eα=Eβ, 相應的Ms=±1/2 的兩種自旋狀態具有相同的能量。當H≠0 時,能級分裂為二,這種分裂稱為Zemman 分裂。它們的能級差為:
△Ee=geβH
若在垂直穩恆磁場方向加一頻率為υ的電磁輻射場,且滿足條件:
hυ = gβH
式中,h—為Planck 常數,β—為Bohr 磁子,g —朗德因子;
則處在低能態的電子將吸收電磁輻射能量而躍入高能量狀態,即發生受激躍遷,這就是EPR 現象。因而,hυ = gβH 稱為實現EPR 所應滿足的共振條件。
3.g因子
自由電子g=ge=2.002,實際情況下g=h?/?B(H0+H’),g反映分子內部結構(因附加磁場H’與自旋、軌道及相互作用有關),自由基g值偏離很少超過±0.5%,非有機自由基,g值可以在很大範圍內變化,過渡金屬離子,因軌道角動量對磁矩有貢獻,g偏離ge。
4.主要特徵
由於通常採用高頻調場以提高儀器靈敏度,記錄儀上記出的不是微波吸收曲線(由吸收係數X''對磁場強強度H作圖)本身,而是它對H的一次微分曲線。後者的兩個極值對應於吸收曲線上斜率最大的兩點,而它與基線的交點對應於吸收曲線的頂點。
g值從共振條件hv=gβH看來,h、β為常數,在微波頻率固定後,v亦為常數,餘下的g與H二者成反比關係,因此g足以表明共振磁場的位置。g值在本質上反映出一種物質分子內區域性磁場的特徵,這種區域性磁場主要來自軌道磁矩。自旋運動與軌道運動的偶合作用越強,則g值對ge(自由電子的g值)的增值越大,因此g值能提供分子結構的資訊。對於只含C、H、N和O的自由基,g值非常接近ge,其增值只有千分之幾。
當單電子定域在硫原子時,g值為2.02-2.06。多數過渡金屬離子及其化合物的g值就遠離ge,原因就是它們原子中軌道磁矩的貢獻很大。例如在一種Fe3+絡合物中,g值高達9.7。
線寬通常用一次微分曲線上兩極值之間的距離表示(以高斯為單位),稱“峰對峰寬度”,記作ΔHpp。線寬可作為對電子自旋與其環境所起磁的相互作用的一種檢測,理論上的線寬應為無限小,但實際上由於多種原因它被大大的增寬了。
超精細結構如在單電子附近存在具有磁性的原子核,透過二者自旋磁矩的相互作用,使單一的共振吸收譜線分裂成許多較狹的譜線,它們被稱為波譜的超精細結構。設n為磁性核的個數,I為它的核自旋量子數,原來的單峰波譜便分裂成(2nI+1)條譜線,相對強度服從於一定規律。在化學和生物學中最常見的磁性核為1H及14N,它們的I各為1/2及1。如有n個1H原子存在,即得(n+1)條譜線,相對強度服從於(1+x)n中的二項式分配係數。如有n個14N原子存在,即得(2n+1)條譜線,相對強度服從於(1+x+X2)n中的3項式分配係數。超精細結構對於自由基的鑑定具有重要價值。
吸收曲線下所包的面積可從一次微分曲線進行兩次積分算出,與含已知數的單電子的標準樣品作比較,可測出試樣中單電子的含量,即自旋濃度。
5.主要檢測物件 可分為兩大類:
①在分子軌道中出現不配對電子(或稱單電子)的.物質。如自由基(含有一個單電子的分子)、雙基及多基(含有兩個及兩個以上單電子的分子)、三重態分子(在分子軌道中亦具有兩個單電子,但它們相距很近,彼此間有很強的磁的相互作用,與雙基不同)等。
②在原子軌道中出現單電子的物質,如鹼金屬的原子、過渡金屬離子(包括鐵族、鈀族、鉑族離子,它們依次具有未充滿的3d,4d,5d殼層)、稀土金屬離子(具有未充滿的4f殼層)等。
三、實驗內容和步驟
羥基自由基(?OH)等氧自由基是主要的活性物種,然而由於?OH 的活性高、壽命短,因而難以直接測定。捕獲劑捕獲短壽命的氧自由基生成相對穩定的、壽命較長的自由基,這些具有順磁性的有機物種在磁場和微波的協同作用下容易被EPR 分析檢測。 DMPO 是一種對氧自由基捕集效率很高的自旋捕集劑,而且形成的自旋加合物,DMPO-OH,有很特徵的超精細分裂圖譜和超精細分裂常數。
實驗步驟如下:
1、取適量DMPO樣品於樣品管中裝樣,將樣品管一端封住;
2、在插入樣品管前用紙擦拭確保其乾淨;
3、樣品管垂直放入諧振腔,等待EPR 檢測。
4、調節儀器引數,得到譜圖。
四、實驗結果與討論
得到資料見附圖。從圖中可見,DMPO-OH 的EPR 波譜由四條譜線組成,強度比為1:2:2:1。
五、實驗心得
電子順磁共振(EPR)和核磁共振(NMR)的區別:
a. EPR和NMR是分別研究電子磁矩和核磁矩在外磁場中重新取向所需的能量; b. EPR的共振頻率在微波波段,NMR共振頻率在射頻波段;
c. EPR的靈敏度比NMR的靈敏度高,EPR檢出所需自由基的絕對濃度約在10-8M的數量級;
d. EPR和NMR儀器結構上的差別,前者是恆定頻率,採取掃場法,後者還可以恆定磁場,採取掃頻法。
篇二:微波順磁共振、核磁共振實驗報告
摘要:
電子自旋共振(Electron Spin Resonance),縮寫為ESR,又稱順磁共振(Paramagnetic Resonance)。它是指處於恆定磁場中的電子自旋磁矩在射頻電磁場作用下發生的一種磁能級間的共振躍遷現象。這種共振躍遷現象只能發生在原子的固有磁矩不為零的順磁材料中,稱為電子順磁共振。1944年由前蘇聯的柴伏依斯基首先發現。它與核磁共振(NMR)現象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR實驗技術後來也被用來觀測ESR現象。目前它在化學、物理、生物和醫學等各方面都獲得了極其廣泛的應用。用電子自旋共振方法研究未成對的電子,可以獲得其它方法不能得到或不能準確得到的資料。如電子所在的位置,遊離基所佔的百分數等等。
1939年美國物理學家拉比用他創立的分子束共振法實現了核磁共振。1945年至1946年珀賽爾小組和布洛赫小組分別在石蠟小組分別在石蠟和水中觀測到穩態核磁共振訊號,從而在宏觀的凝聚物質中取得成功。此後,核磁共振技術迅速發展,還滲透到生物、醫學、計量等學科領域以及眾多生產技術部門,成為分析測試中不可缺少的實驗手段。
關鍵詞:電子自旋共振 共振躍遷 鐵磁共振 g因子
引言:
順磁共振(EPR)又稱為電子自旋共振(ESR),這是因為物質的順磁性主要來自電子的自旋。電子自旋共振即為處於恆定磁場中的電子自旋在射頻場或微波場作用下的磁能級間的共振躍遷現象。研究瞭解電子自旋共振現象,測量有機自由基DPPH的g因子值,瞭解和掌握微波器件在電子自由共振中的應用,從矩形諧振長度的變化,進一步理解諧振腔的駐波。
鐵磁共振和順磁共振、核磁共振一樣是研究物質宏觀效能和微觀結構的有效手段本實驗採用掃場法進行微波鐵磁材料的共振實驗。即保持微波頻率不變,連續改變外磁場,當外磁場與微波頻率之間符合一定的關係時,可發生射頻磁場的能量被吸收的鐵磁共振現象。微波鐵磁共振在磁學和固體物理學中佔有重要地位。它是微波鐵氧體物理學的基礎。微波鐵氧體在雷達技術和微波通訊方面有重要的應用。
順磁共振
1、實驗原理:
一、 電子的自旋軌道磁矩與自旋磁矩
原子中的電子由於軌道運動,具有軌道磁矩,其數值為:
e
2me?l??Pl 負號表示方向同Pl相反
在量子力學中Pl?
l?e?B 其中?B?e?2me稱為玻爾磁子。
電子除了軌道運動外還具有自旋運動,因此還具有自旋磁矩,
其數值表示為:?s??emePs?由於原子核的磁矩可以忽略不計,原子中電子的軌道磁矩和自旋磁矩合成原子的總磁矩:?j??ge2mePj 其中g是朗德因子,g?1?j(j?1)?l(l?1)?s(s?1)2j(j?1)
在外磁場中原子磁矩要受到力的作用,其效果是磁矩繞磁場的方向作旋進,也就是Pj繞著磁場方向作旋進,引入回磁比???ge
2me,總磁矩可表示成?j??Pj。同時原子角動
量Pj和原子總磁矩?j取向是量子化的。Pj在外磁場方向上的投影為:
Pj?m? m?j,j?1,j?2,??j
其中m稱為磁量子數,相應磁矩在外磁場方向
?j??m???mg?B m?j,j?1,j?2,??j
二、電子順磁共振
原子磁矩與外磁場B相互作用可表示為:E???j?B??mg?BB???m?B
不同的磁量子數m所對應的狀態表示不同的磁能級,相鄰磁能級間的能量差為?E???B,它是由原子受磁場作用而旋進產生的附加能量。
如果在原子所在的穩定磁場區又疊加一個與之垂直的交變磁場,且角頻率?滿足條件 ???g?BB即????E???B,剛好滿足原子在穩定外磁場中的鄰近二能級差時,二鄰
近能級之間就有共振躍遷,我們稱之為電子順磁共振。
當原子結合成分子或固體時,由於電子軌道運動的角動量常是猝滅的,即Pj近似為零,
所以分子和固體中的磁矩主要是電子自旋磁矩的貢獻。根據泡利原理,一個電子軌道最多隻能容納兩個自旋相反的電子,若電子軌道都被電子成對地填滿了,它們的自旋磁矩相互抵消,便沒有固有磁矩。通常所見的化合物大多數屬於這種情況,因而電子順磁共振只能研究具有未成對電子的特殊化合物。
三、弛豫時間
實驗樣品是含有大量具有不成對電子自旋所組成的系統,雖然各個粒子都具有磁矩,但是在熱運動的擾動下,取向是混亂的,對外的合磁矩為零。當自旋系統處在恆定的外磁場H0中時,系統內各質點的磁矩便以不同的角度取向磁場H0的方向,並繞著外場方向進動,從而
形成一個與外磁場方向一致的宏觀磁矩M。當熱平衡時,分佈在各能級上的粒子數服從波耳茲曼定律,即:
N2
N1?exp(?E2?E1kT)?exp(??EkT)
式中k是波耳茲曼常數,k=1.3803×10-16(爾格/度),T是絕對溫度。計算表明,低能級上的粒子數略比高能級上的粒子數多幾個。這說明要現實出宏觀的共振吸收現象所必要的條件,既由低能態向高能級躍遷的粒子數比由高能級向低能級躍遷的粒子數要多是滿足的。正是這一微弱的上下能級粒子數之差提供了我們觀測電子順磁共振現象的可能性。
2、實驗裝置
微波順磁共振實驗系統由三釐米固態訊號發生器,隔離器,可變衰減器,波長計,魔T,匹配負載,單螺調配器,晶體檢波器,矩形樣品諧振腔,耦合片,磁共振實驗儀,電磁鐵等組成,為使聯結方便,增加了H面彎波導,波導支架等元件
三釐米固態訊號發生器:是一種使用體效應管做振盪源的訊號發生器,為順磁共振實驗系統提供微波振盪訊號。
隔離器:位於磁場中的某些鐵氧體材料對於來自不同方向的電磁波有著不同的吸收,經過適當調節,可使其哦對微波具有單方向傳播的特性。隔離器常用於振盪器與負載之間,起隔離和單向傳輸作用。
可變衰減器:把一片能吸收微波能量的吸收片垂直與矩形波導的寬邊,縱向插入波導管即成,用以部分衰減傳輸功率,沿著寬邊移動吸收可改變衰減量的大小。衰減器起調節系統中微波功率以及去耦合的作用。
波長表:電磁波透過耦合孔從波導進入頻率計的空腔中,當頻率計的腔體失諧時,腔裡的電磁場極為微弱,此時,它基本上不影響波導中波的傳輸。當電磁波的頻率滿足空腔的諧振條件時,發生諧振,反映到波導中的阻抗發生劇烈變化,相應地,透過波導中的電磁波訊號強度將減弱,輸出幅度將出現明顯的跌落,從刻度套筒可讀出輸入微波諧振時的刻度,透過查表可得知輸入微波諧振頻率。
匹配負載:波導中裝有很好地吸收微波能量的電阻片或吸收材料,它幾乎能全部吸收入射功率。
微波源:微波源可採用反射式速調管微波源或固態微波源。本實驗採用3cm固態微波源,它具有壽命長、輸出頻率較穩定等優點,用其作微波源時,ESR的實驗裝置比採用速調管簡單。因此固態微波源目前使用比較廣泛。透過調節固態微波源諧振腔中心位置的調諧螺釘,可使諧振腔固有頻率發生變化。調節二極體的工作電流或諧振腔前法蘭盤中心處的調配螺釘可改變微波輸出功率。
魔 T:魔 T是一個具有與低頻電橋相類似特徵的微波元器件,如圖(2)所示。它有四個臂,相當於一個E~T和一個H~T組成,故又稱雙T,是一種互易無損耗四埠網路,具有“雙臂隔離,旁臂平分”的特性。利用四埠S矩陣可證明,只要1、4臂同時調到匹配,則2、3臂也自動獲得匹配;反之亦然。E臂和H臂之間固有隔離,反向臂2、3之間彼此隔離,即從任一臂輸入訊號都不能從相對臂輸出,只能從旁臂輸出。訊號從H臂輸入,同相等分給2、3
臂;E臂輸入則反相等分給2、3臂。由於互易性原理,若訊號從
反向臂2,3同相輸入,則E臂得到它們的差訊號,H臂得到它們
的和訊號;反之,若2、3臂反相輸入,則E臂得到和訊號,H臂
得到差訊號。
當輸出的微波訊號經隔離器、衰減器進入魔 T的H臂,同相
等分給2、3臂,而不能進入E臂。3臂接單螺調配器和終端負載;
2臂接可調的反射式矩形樣品諧振腔,樣品DPPH在腔內的位置可
調整。E臂接隔離器和晶體檢波器;2、3臂的反射訊號只能等分給E、H臂,當3臂匹配時,E臂上微波功率僅取自於2臂的反射。 右圖 魔T示意圖
樣品腔:樣品腔結構,是一個反射式終端活塞可調的矩型諧振腔。諧振腔的末端是可移動的活塞,調節活塞位置,使腔長度等於半個波導波長的整數倍(l?p?g/2)時,諧振腔
諧振。當諧振腔諧振時,電磁場沿諧振腔長l方向出現P個長度為?g/2的駐立半波,即TE10P模式。腔內閉合磁力線平行於波導寬壁,且同一駐立半波磁力線的方向相同、相鄰駐立半波磁力線的方向相反。在相鄰兩駐立半波空間交界處,微波磁場強度最大,微波電場最弱。滿足樣品磁共振吸收強,非共振的介質損耗小的要求,所以,是放置樣品最理想的位置。 在實驗中應使外加恆定磁場B垂直於波導寬邊,以滿足ESR共振條件的要求。樣品腔的寬邊正中開有一條窄槽,透過機械傳動裝置可使樣品處於諧振腔中的任何位置並可以從窄邊上的刻度直接讀數,調節腔長或移動樣品的位置,可測出波導波長?。
3、實驗步驟:
1、連線系統,將可變衰減器順時針旋至最大, 開啟系統中各儀器的電源,預熱20分鐘。
2、將磁共振實驗儀器的旋鈕和按鈕作如下設定: “磁場”逆時針調到最低,“掃場” 逆時針調到最低,按下“調平衡/Y軸”按鈕(注:必須按下),“掃場/檢波”按鈕彈起,處於檢波狀態。(注:切勿同時按下)。
3、將樣品位置刻度尺置於90mm處,樣品置於磁場正中央。
4、將單螺調配器的探針逆時針旋至“0"刻度。
5、訊號源工作於等幅工作狀態,調節可變衰減器使調諧電錶有指示,然後調節“檢波靈敏度”旋鈕, 使磁共振實驗儀的調諧電錶指示佔滿度的2/3以上。
6、用波長表測定微波訊號的頻率,方法是:旋轉波長表的測微頭,找到電錶跌破點,查波長表——刻度表即可確定振盪頻率,使振盪頻率在9370MHz左右,如相差較大,應調節訊號源的振盪頻率,使其接近9370MHz的振盪頻率。測定完頻率後,將波長表旋開諧振點。
7、為使樣品諧振腔對微波訊號諧振,調節樣品諧振腔的可調終端活塞,使調諧電錶指示最小,此時,樣品諧振腔中的駐波分佈如圖7-4-5所示。
圖7-4-5 樣品諧振腔中的駐波分佈示意圖